부정확한 부화소 단위의 위치 추정 오류에 적응적인 정규화된 고해상도 영상 재구성 연구

Regularized Adaptive High-resolution Image Reconstruction Considering Inaccurate Subpixel Registration

  • 이은실 (연세대학교 전기전자공학과) ;
  • 변민 (연세대학교 전기전자공학과) ;
  • 강문기 (연세대학교 전기전자공학과)
  • Lee, Eun-Sil (Yonsei University, Dept. of Electrical & Electronic Engineering) ;
  • Byun, Min (Yonsei University, Dept. of Electrical & Electronic Engineering) ;
  • Kang, Moon-Gi (Yonsei University, Dept. of Electrical & Electronic Engineering)
  • 발행 : 2003.03.01

초록

기존의 영상 획득 시스템들이 어느 정도의 엘리어싱을 허용하도록 제작되어왔음에도 불구하고, 고해상도 영상에 대한 요구는 점점 더 증가하고 있다. 본 논문에서는 부정확한 부화소 단위의 위치 추정 오류를 고려한 고해상도 재구성 알고리즘을 제안한다. 부정확한 부화소 위치 추정 오류로 인해 생기는 불량위치문제(ill-posedness)를 해결하기 위해 정규화 반복 연산법을 적용하였다, 특히 여러 장의 저해강도 영상들을 개별적으로 고려하기에 적합한 다중채널 영상 재구성 방법을 도입하였다. 각 저해상도 영상에서 발생하는 움직임 추정오류는 서로 다른 경향성을 나타내므로, 정규화 파라미터들은 각 채널에 맞게 결정되어야 한다. 이를 위해 정규화 파라미터들을 자동으로 결정하는 방법을 제안한다. 제안한 알고리즘은 움직임 추정 오류에 매우 안정하며, 원 영상과 잡음에 대한 사전정보를 필요로 하지 않는다. 또한 주관적인 측면과 객관적인 측면에서 모두 우수한 결과를 실험적으로 보인다.

The demand for high-resolution images is gradually increasing, whereas many imaging systems yield aliased and undersampled images during image acquisition. In this paper, we propose a high-resolution image reconstruction algorithm considering inaccurate subpixel registration. A regularized Iterative reconstruction algorithm is adopted to overcome the ill-posedness problem resulting from inaccurate subpixel registration. In particular, we use multichannel image reconstruction algorithms suitable for application with multiframe environments. Since the registration error in each low-resolution has a different pattern, the regularization parameters are determined adaptively for each channel. We propose a methods for estimating the regularization parameter automatically. The preposed algorithm are robust against the registration error noise. and they do not require any prior information about the original image or the registration error process. Experimental results indicate that the proposed algorithms outperform conventional approaches in terms of both objective measurements and visual evaluation.

키워드

참고문헌

  1. R. Y. Tsai and T. S. Huang, 'Multiple frame image restoration and registration,' in Advances in Computer Vision and Image Processing, T. S. Huang, Ed., Vol. 1, pp. 317-339. JAI Press Inc., 1984
  2. S. P. Kim, N. K. Bose, and H. M. Valenzuela, 'Recursive reconstruction of high resolution image from noisy undersampled multiframes,' IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, pp. 1013-1027, Jun. 1990
  3. H. Stark and P. Oskoui, 'High resolution Image Recovery from Image-plane Arrays, Using Convex Projection,' J. Opt. Soc. Am. A, Vol. 6, pp. 1715-1726. 1989
  4. M. Irani and S. Peleg, 'Improving Resolution by Image Registraion,' CVGIP: Graphical Models and Image Proc., Vol. 53, pp. 231-239, May 1991
  5. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong and E. A. Watson, 'High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,' Opt. Eng., Vol. 37, No. 1, pp. 247-260, Jan. 1998 https://doi.org/10.1117/1.601623
  6. H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall, New York, 1977
  7. B. R. Hunt, 'Application of constrained least squqres estimation to image restoration by digital computers,' IEEE Trans. Comput., Vol. C-22, pp. 805-812, 1973
  8. M. G. Kang and A. K. Katsaggelos, Simultaneous multichannel image restoration and estimation of the regularizaton parameters,' IEEE Trans. Image Processing, Vol. 6, No. 5, pp. 774-778, May 1997
  9. M. G. Kang, 'Generalized multichannel deconvolution approach and its applications,' SPIE Optical Engineering, Vol. 37, No. 11, pp. 2953-2964, Nov. 1998
  10. Moon Gi Kang and A. K. Katsaggelos, 'Simultaneous iterative restoration and evaluation of the regularization parameter,' IEEE Trans. Signal Processing, Vol. 40, pp. 2329-2334, Sep. 1992
  11. Moon Gi Kang and A. K. Katsaggelos, 'General choice of the regularization functional in regularized image restoration,' IEEE Trans. Image Processing, Vol. 4, No. 5, pp. 594-602, May 1995 https://doi.org/10.1109/83.382494
  12. R. C. Gonzalez and D. Wintz, Digital Image Processing, Reading, nA: Addison-Wesley, 1987
  13. B. D. Lucas and T. Kanade, 'An iterative image registration technique with an application to stereo vision,' Proc. DARPA Image Understanding Workshop, pp. 121-130, 1981
  14. R. G. Keys, 'Cubic convolution interpolation for digital image processing,' IEEE Trans. Acoust. Speech and Sign. Proc., Vol. ASSP-29, pp. 1153-1160, Dec. 1981