초록
기존의 영상 획득 시스템들이 어느 정도의 엘리어싱을 허용하도록 제작되어왔음에도 불구하고, 고해상도 영상에 대한 요구는 점점 더 증가하고 있다. 본 논문에서는 부정확한 부화소 단위의 위치 추정 오류를 고려한 고해상도 재구성 알고리즘을 제안한다. 부정확한 부화소 위치 추정 오류로 인해 생기는 불량위치문제(ill-posedness)를 해결하기 위해 정규화 반복 연산법을 적용하였다, 특히 여러 장의 저해강도 영상들을 개별적으로 고려하기에 적합한 다중채널 영상 재구성 방법을 도입하였다. 각 저해상도 영상에서 발생하는 움직임 추정오류는 서로 다른 경향성을 나타내므로, 정규화 파라미터들은 각 채널에 맞게 결정되어야 한다. 이를 위해 정규화 파라미터들을 자동으로 결정하는 방법을 제안한다. 제안한 알고리즘은 움직임 추정 오류에 매우 안정하며, 원 영상과 잡음에 대한 사전정보를 필요로 하지 않는다. 또한 주관적인 측면과 객관적인 측면에서 모두 우수한 결과를 실험적으로 보인다.
The demand for high-resolution images is gradually increasing, whereas many imaging systems yield aliased and undersampled images during image acquisition. In this paper, we propose a high-resolution image reconstruction algorithm considering inaccurate subpixel registration. A regularized Iterative reconstruction algorithm is adopted to overcome the ill-posedness problem resulting from inaccurate subpixel registration. In particular, we use multichannel image reconstruction algorithms suitable for application with multiframe environments. Since the registration error in each low-resolution has a different pattern, the regularization parameters are determined adaptively for each channel. We propose a methods for estimating the regularization parameter automatically. The preposed algorithm are robust against the registration error noise. and they do not require any prior information about the original image or the registration error process. Experimental results indicate that the proposed algorithms outperform conventional approaches in terms of both objective measurements and visual evaluation.