References
- J. Korean Math. Soc. v.38 Characterization of strictly operator semi-stable distributions Choi, G. S.
- Bull. Korean Math. Soc. v.37 Representation of operator semi-stable distributions Choi, G. S.
- Japan. J. Math. v.21 Characterization of some classes of multidimensional distributions related to semi-stable distributions Choi, G. S.
- Mathematica Slovaca v.39 Characterization of operator-semi-stable distributions Chorny, V.
- Litovsk.Mat.Sb. v.20-2 Generalized semistable probability distributions Krapavickaite, D.
- Lithuanian Math.J. v.20 English translation Krapavickaite, D. https://doi.org/10.1007/BF00966576
- Litovsk. Mat. Sb. v.20-4 Certain classes of probability distributions Krapavickaite, D.
- Lithuanian Math. J. v.20 English translation Krapavickaite, D. https://doi.org/10.1007/BF00967671
-
Studia Math.
v.61
Semi-stable probability measures on
$R^N$ Jajte, R. -
Theorie de l'addition des variables aleatoires (
$2^e$ ed.) L$\'{e}$ vy, P. - Ukrain. Math. Statist. and Pro. v.5 Linear forms and statistical criteria(in Russian) Linnik, Y.
- Selected Translations in Math. Statist. and Pro.(English translation) v.3 Linnik, Y.
- Sankhya, Ser. A v.32 Solution of functional equations arising in some regression problems and a characterizations the Cauchy law Ramachandran, B.;Rao, C. R.
-
L
$\'{e}$ vy Processes and Infinitely Divisible Distributions Sato, K. - J. Multivar. Anal. v.22 Strictly operator-stable distributions Sato, K. https://doi.org/10.1016/0047-259X(87)90091-1
- Technical Report Series, Lab.Res. Statist. Probab. Carleton Unvi. and Univ Ottawa no.54 Lectures on multivariate infinitely divisible distributions and operator-stable processes Sato, K.
- Nagoya. Math. J. v.97 Completely operator-selfdecomposable distribut-ions and operator-stable distributions Sato, K.;Yamazato, M.
- Trans. Amer. Math. Soc. v.136 Operator-stable probability distributions on vector groups Sharpe, M. https://doi.org/10.2307/1994700
- Ann. Inst. Statist. Math. v.20 Characteristic function satisfying a functional equation I Shimizu, R. https://doi.org/10.1007/BF02911635
- Sankhy a, Ser.A v.40 Solution to a functional equation and its application to some characterization problem Shimizu, R.
- Sankhy a, Ser.A v.43 General characterization theorems for the Weibull and stable distributions Shimizu, R.;Davies, L.