Characterization of Some Classes of Distributions Related to Operator Semi-stable Distributions¹⁾

Sang Yeol Joo²⁾, Young Ho Yoo³⁾ and Gyeong Suk Choi⁴⁾

Abstract

For a positive integer m, operator m-semi-stability and the strict operator m-semi-stability of probability measures on R^d are defined. The operator m-semi-stability is a generalization of the definition of operator semi-stability with exponent Q. Characterization of strictly operator m-semi-stable distributions is given. Translation of strictly operator m-semi-stable distribution is discussed.

Keywords: Operator semi-stability, Semi-stability, Operator stability, Strictly semi-stability

1. Introduction

Let m be a positive integer. In [3], the classes of m-semi-stable and strictly m-semi-stable distributions on R^d were studied. In one dimension, they were first investigated by L 'evy [8]. The characterization of these classes on R was developed by Linnik [9], Shimizu [16], Ramachandran and Rao [10], and others. Extension to multidimension was done by Krapavickait \dot{e} [5,6] and Choi [3]. Here we extend those classes to linear operator cases.

Let $I(R^d)$ be the collection of infinitly divisible distributions on R^d . The characteristic function of $\mu \in I(R^d)$ is denoted by $\widehat{\mu}(z)$, $z \in R^d$. Let $M_+(R^d)$ be the class of linear operators on R^d all

¹⁾ This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

Professor, Department of Statistics, Kangwon National University, Chunchon, Kangwon,200-701, South Korea.
 E-mail:syjoo@kangwon.ac.kr

³⁾ Associate Professor, Department of Statistics, Kangwon National University, Chunchon, Kangwon, 200-701, South Korea. E-mail:yhyoo@kangwon.ac.kr

⁴⁾ Instructor, Department of Statistics, Kangwon National University, Chunchon, Kangwon, 200-701, South Korea.
E-mail:gschoi@kangwon.ac.kr

of whose eigenvalues have positive real parts. Let $0 < b_l < 1$, $Q \in M_+(R^d)$ and m a positive integer in this paper throughout. We call a distribution μ on R^d operator m-semi-stable if $\mu \in I(R^d)$ and there exist real numbers $b_l, c_l, l = 1, 2, \cdots, m$, and a vector $\gamma \in R^d$ satisfying

$$c_i > 0$$
, $\sum_{l=1}^m c_l > 1$, and $\sum_{l=1}^m b_l c_l = 1$

such that

$$\widehat{\mu}(z) = e^{\langle \gamma, z \rangle} \prod_{l=1}^{m} \widehat{\mu}(b_l^{Q'}z)^{c_l}. \tag{1.1}$$

Here \langle , \rangle is the Euclidean inner product in R^d and Q is the adjoint of Q. The class of distributions satisfying (1.1) is denoted by $OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$. We call distributions in $OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ - semi-stable. If $\mu \in OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ with Q = I, then μ is a strictly m-semi-stable distribution on R^d in the sense of [3].

Further, a distribution μ on R^d is strictly operator m-semi-stable if $\mu \in OSS$ $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ satisfying

$$\widehat{\mu}(z) = \prod_{l=1}^{m} \widehat{\mu}(b_l^{Q} z)^{c_l}. \tag{1.2}$$

The class of distributions satisfying (1.2) is denoted by $OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$. We call distributions in $OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ strictly $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable. We note that $\mu \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ with Q = I is a strictly m-semi-stable distribution on R^d in the sense of [3]. In one dimension (d = 1), the class of $OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ is that of strictly m-semi-stable distributions on R, which is extended to more general case by Shimizu [17], Shimizu and Davies [18] and others.

For some 0 < b < 1, let OSS(b, Q) be the class of $\mu \in I(\mathbb{R}^d)$ such that

$$\widehat{\mu}(z) = e^{\langle \gamma, z \rangle} \widehat{\mu}(b^{Q}z)^{c} \tag{1.3}$$

for some c>0 and $\gamma \in \mathbb{R}^d$. Distributions in OSS(b,Q) are called (b,Q)-semi-stable. For some 0 < b < 1, $\mu \in OSS_0(b,Q)$ means that $\widehat{\mu}(z) = \widehat{\mu}(b^Q z)^c$ for some c>0. Distributions in $OSS_0(b,Q)$ are called *strictly-* (b,Q)-semi-stable. We note that operator 1-semi-stable distribution is (b,Q)-semi-stable distribution. Also we note that, for every $b \in (1,\infty)$, the distribution satisfying (1.3) is operator stable distribution of Sharpe [15], which is an extension of stable distribution. Stable distributions were introduced in the 1920s by Lévy. It is well-known that Gaussian distributions are special cases of stable distributions. See [11] for details and further references.

Operator semi-stable distributions are defined as limit distributions of subsequences via $\{k_j\}$ with $\frac{k_j}{k_{j+1}} \rightarrow b$ for some $b \in (0,1)$, of operator normalizations of partial sums Y_k of

sequences of independent identically distributed random vectors. The operator normalization of Y_k here means $A_kY_k+c_k$ with vectors c_k in R^d and sequences of invertible linear operators A_k acting in R^d . Under the condition of fullness(that is, the support of μ is not contained in any (d-1)-dimensional hyperplane in R^d), Jajte [7] shows that μ is operator semi-stable if and only if $\mu \in OSS(b,Q)$ for some 0 < b < 1 and $Q \in M_+(R^d)$ satisfying the condition that the real parts of all eigenvalues are more than or equal to 1/2. Without the assumption of the fullness of μ , the class of operator semi-stable distributions is strictly bigger than OSS(b,Q), which is given in [2]. The operator semi-stable distributions are an extension of operator stable distributions on one hand and of semi-stable distributions on the other. See [13,14] for review on operator stable distributions.

The main purpose of this paper is to obtain characterization of translations of strictly $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable distributions and to discuss relations between translation of strictly operator semi-stable distribution and translation of strictly $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable distribution.

After some preliminaries in Section 2, we give a necessary and sufficient condition for $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable purely non-Gaussian distribution in Section 3.

In Section 4, we get complete characterization of $\mu \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ and give a representation of translation of strictly $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable distribution. Using these results, we investigate relations between translation of strictly operator semi-stable distribution and strictly $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable distribution.

2. Preliminaries

We begin with some notation. Let $B(R^d)$ be the collection of Borel sets in R^d . Let θ_j , $1 \le j \le q + 2r$ denote all distinct eigenvalues of Q such that $\theta_1, \dots, \theta_q$, are real if $q \ge 1$ and that $\theta_{q+1}, \dots, \theta_{q+2r}$, are non-real and $\theta_j = \overline{\theta_{j+r}}$ for $q+1 \le j \le q+r$ if $r \ge 1$. Let $\theta_j = \alpha_j + i\beta_j$, where α_j and β_j are real numbers. Let $f(\zeta)$ be the minimal polynomial of Q

with

$$f(\zeta) = f_1(\zeta)^{n_1} \cdots f_{q+r}(\zeta)^{n_{q+r}},$$

where $f_j(\zeta) = \zeta - \alpha_j$ for $1 \le j \le q$ and $(\zeta - \alpha_j)^2 + \beta_j^2$ for $q + 1 \le j \le q + r$. We write W_j for the kernel of $f_j(Q)^{n_j}$ in R^d , $1 \le j \le q + r$. We denote the kernel of $(Q - \theta_j)^{n_j}$ in C^d , $1 \le j \le q + 2r$, by V_j . Let T_j be the projector onto V_j . We denote

$$D_j = \{(Q - \theta_j)v : v \in V_j\}$$
 in C^d , $1 \le j \le q + 2r$.

Let P_j be the projector onto D_j in C^d , $1 \le j \le q + 2r$. We easily show the following proposition.

Proposition 2.1. Suppose that 1 is not an eigenvalue of $\sum_{l=1}^{m} c_l b_l^Q$. Then any $\mu \in OSS$ $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ is a translation of a strictly $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable distribution.

We set

$$J = \{j : 1 \le j \le q + 2r \text{ satisfying } \sum_{l=1}^{m} c_l b_l^{\theta_j} = 1 \text{ and } \alpha_j > 1/2 \},$$

$$K = \{j: 1 \le j \le q + 2r \text{ satisfying } \sum_{i=1}^{m} c_i b_i^{\theta_i} \ne 1 \text{ and } \alpha_j > 1/2 \},$$

and

$$\Gamma = \{j : 1 \le j \le q + r \text{ satisfying } \alpha_i > 1/2 \}.$$

Let $W_{\Gamma} = \bigoplus_{j \in \Gamma} W_j$, and let $S_{\Gamma} = \{ \xi \in W_{\Gamma} : | \xi | = 1, |u^Q \xi| > 1 \text{ for } all \ u > 1 \}$. Then any $x \in W_{\Gamma}$ is uniquely expressed as $x = u^Q \xi$ with $\xi \in S_{\Gamma}$ and $u \in (0, \infty)$.

Any $\mu \in I(\mathbb{R}^d)$ has the Lévy representation (A, ν, γ) , which means

$$\widehat{\mu}(z) = \exp\left[i\langle \gamma, z\rangle - \frac{1}{2}\langle Az, z\rangle + \int_{R^d} G(z, x)\nu(dx)\right],$$

with $G(z,x) = e^{i\langle z,x\rangle} - 1 - i\langle z,x\rangle (1+|x|^2)^{-1}$. Here $\gamma \in \mathbb{R}^d$, A(called the Gaussian covariance of μ) is a symmetric nonnegative-definite operator on \mathbb{R}^d , and ν (called the Lévy measure of μ) is a Lévy measure satisfying $\nu\{0\} = 0$ and

 $\int_{R^{d}-\{0\}} |x|^{2} (1+|x|^{2})^{-1} \nu(dx) \langle \infty.$ These A, ν and γ are uniquely determined by μ . When $\nu=0$, we call μ a Gaussian distribution. If A=0, then we call μ a purely non-Gaussian distribution.

3. Purely non-Gaussian operator *m*-semi-stable distributions

For any $\rho > 0$, $A_m(0)$ and $A_m(\rho)$ are respectively the sets of all *m*-tuples (b_1, \dots, b_m) with $0 < b_j < 1$, $j = 1, \dots, m$, satisfying the following conditions.

 $A_m(0)$: for some l and i, $\log b_l / \log b_i$ is an irrational number,

 $A_m(\rho)$: $\log b_l/\log b_i$ is a rational numbers for every l and i, and $m_l = -\log b_l/\rho$, $l = 1, \dots, m$, are positive integers with their greatest common factor equal to one.

The following Theorem 3.1 characterizes the class of all purely non-Gaussian operator m—semi-stable distributions. A related paper is Chorny [4]. In this paper, we do not treat the whole structure of Gaussian operator m—semi-stable distributions. The complete description of Gaussian operator stable distributions and Gaussian operator semi-stable distributions is respectively obtained by Sato [13] and Sato and Yamazato[14], and Choi [2].

Theorem 3.1. Let μ be a $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable distribution on \mathbb{R}^d with Lévy representation $(0, \nu, \gamma)$. Then, $\mu \in OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ if and only if

$$\nu(E) = \int_{S_E} \lambda(d\xi) \int_0^\infty I_E(u^Q \xi) d(-H_{\xi}(u)u^{-1}), \quad E \in B(R^d),$$

where

- (i) λ is a finite measure on S_{Γ}
- (ii) $H_{\varepsilon}(u)$ is a real-valued function being right-continuous in $u \in (0, \infty)$

and measurable in $\xi \in S_{\Gamma}$ such that $H_{\xi}(u)u^{-1}$ is decreasing (in the wide sense allowing flatness), $H_{\xi}(1) = 1$ for any u and ξ and in addition, one of the following (a) and (b):

- (a) $(b_1, \dots b_m) \in A_m(0), H_{\varepsilon}(u) = 1,$
- (b) $(b_1, \dots b_m) \in A_m(\rho)$, $H_{\varepsilon}(bu) = H_{\varepsilon}(u)$ and $b = e^{-\rho}$.

This λ is uniquely determined by ν , called *spherical component* of ν and $H_{\xi}(u)$ called the Q-radial component of ν .

Proof of Theorem 3.1. Suppose that $\mu \in OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ with the Lévy

representation $(0, \nu, \gamma)$. Then we see that

$$\widehat{\mu}(b_j^Q z) = \exp\left\{\int_{R^d} G(b_j^Q z, x) \nu(dx) + i \langle \gamma, b_j^Q z \rangle\right\}.$$

For $E \in B(\mathbb{R}^d)$, let $\nu_{b_j^Q}(E) = \nu(b_j^{-Q}E)$ on $\mathbb{R}^d - \{0\}$. Then we have that

$$\nu(E) = \sum_{l=1}^{m} c_{l} \nu(b_{l}^{-Q} E). \tag{3.1}$$

For $s \in (0, \infty)$ and $B \in B(S_{\Gamma})$, define $N(s, B) = \nu(\{u^{Q}\xi : \xi \in B, u \rangle s\})$, then the condition (3.1) gives

$$N(s,B) = \sum_{l=1}^{m} c_l \ N(b_l^{-1}s,B). \tag{3.2}$$

Let $-B = \{ -\xi \mid \xi \in B \}$. Then we easily check that $-B \in B(S_{\Gamma})$ for $B \in B(S_{\Gamma})$. By (3.2), we get

$$N(s, -B) = \sum_{l=1}^{m} c_l N(b_l^{-1}s, -B).$$

Let $g_B(u) = N(e^u, B)$ and $h_B(u) = N(e^u, -B)$, we see that $g_{-B}(u) = h_B(u)$. We also see the following by Theorem 5.4.1 (163) in [9]:

- (i) If $(b_1, \dots, b_m) \in A_m(0)$, then N(ts, B) = tN(s, B) for every $t \in (0, \infty)$.
- (ii) If $(b_1, \dots, b_m) \in A_m(\rho)$, then $N(b^n s, B) = b^{-n} N(s, B)$ for every integer n, where $b = e^{-\rho}$.

For $B \in B(S_{\Gamma})$, define $\lambda(B) = \nu(\{u^{Q}\xi \mid \xi \in B, u \geq 1\})$. For any fixed $s \in (0, \infty)$, there is a nonnegative measurable function $N_{\xi}(s)$ of ξ such that

$$N(s,B) = \int_{B} N_{\xi}(s) \lambda(d\xi), \quad B \in B(S_{\Gamma}).$$

Further discussion is given in proof of Theorem 4.1 in [2]. Note that $N_{\xi}(s)$ is right-continuous in $s \in (0, \infty)$. Theorem 2.3 in [3] yields the following:

If
$$(b_1, \dots, b_m) \in A_m(0)$$
, then $N_{\xi}(s) = s^{-1}N_{\xi}(1)$.

If $(b_1, \dots, b_m) \in A_m(\rho)$, then $N_{\xi}(b^n s) = b^{-n} N_{\xi}(s)$ for every integer n.

Setting $N_{\xi}(u) = H_{\xi}(u)u^{-1}$, we see that $H_{\xi}(1) = 1$ and $H_{\xi}(s)$ is nonnegative

right-continuous function. Hence ν is the Lévy measure of (b,Q)-semi-stable. Thus by Lemma 4. 2. in [2], we have that $spt \ \nu \subseteq W_{\Gamma}$.

In the same way as in proof of Theorem 2.3 in [3], we can prove the convers assertion.

4. Strictly operator *m*-semi-stable distributions

For $\xi \in S_{\Gamma}$, we set

$$a(b_l, u, \xi) = \frac{1}{1 + |u^Q \xi|^2} - \frac{1}{1 + |(\frac{u}{b_l})^Q \xi|^2}$$

and set

$$g_{j,k}(b_1,\dots,b_m,u,\xi) = u^{\theta_j}(k!)^{-1}(\log u)^k \sum_{l=1}^m c_l a(b_l,u,\xi)$$

for $1 \le j \le q + 2r$, $k \ge 0$. For $\xi \in S_{\Gamma}$, define

$$g_{0}(b_{1}, \dots, b_{m}, \xi) = \sum_{j \in K} \int_{0}^{\infty} \sum_{k=0}^{n_{i}-1} (Q - \theta_{j}) T_{j} \xi g_{j, k}(b_{1}, \dots, b_{m}, u, \xi) d\left(\frac{-H_{\xi}(u)}{u}\right),$$

$$g_{1}(b_{1}, \dots, b_{m}, \xi) = \sum_{j \in J} \int_{0}^{\infty} \sum_{k=0}^{n_{i}-1} (Q - \theta_{j})^{k} T_{j} \xi g_{j, k}(b_{1}, \dots, b_{m}, u, \xi) d\left(\frac{-H_{\xi}(u)}{u}\right).$$

Lemma 4.1. The functions $g_0(b_1, \dots, b_m, \xi)$, $g_1(b_1, \dots, b_m, \xi)$ are well-defined, R^d -valued, bounded, and measurable on S_{Γ} .

Proof. Let C_0 be constants independent of $\xi \in S_{\Gamma}$ and u. Since $\sum_{l=1}^{m} c_l a(b_l, u, \xi) \le C_0 |u^Q \xi|^2$, we can show the assertion in the above lemma by using the proof of Lemma 2.1 in [1].

Theorem 4.1. Let $\mu \in OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$. Let λ and $H_{\mathcal{E}}(u)$ be the spherical component and the Q-radial component of ν . Then $\mu \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ if and only if

$$(I - \sum_{i=1}^{m} c_i b_i^Q) T_j \gamma = \int_{S_r} (g_0 + g_1) (b_1, \dots, b_m, \xi) \lambda(d\xi), \qquad 1 \le j \le q + 2r. \tag{4.1}$$

Proof. Let $\mu \in OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$. Then $\mu \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ if and only if

$$(I-\sum_{l=1}^{m}c_{l}b_{l}^{Q})\gamma=\int_{S_{l}}\lambda(d\xi)\int_{0}^{\infty}u^{Q}\xi\sum_{l=1}^{m}c_{l}a(b_{l},u,\xi)d(\frac{-H_{\xi}(u)}{u}).$$

By Lemma 4.1, the condition (4.1) is written as

$$(I - \sum_{l=1}^{m} c_{l} b_{l}^{Q}) \gamma = \int_{S_{r}} (g_{0} + g_{1}) (b_{1}, \dots, b_{m}, \xi) \lambda(d\xi).$$

For $j \in J$, $\xi \in S_T$, and $T_j \xi \neq 0$, define

$$g_{j,0}(b_1,\dots,b_m,\xi) = \int_0^\infty g_{j,0}(b_1,\dots,b_m,u,\xi)d\left(\frac{-H_{\xi}(u)}{u}\right).$$

Using the proof of Lemma 4.1, we get that

$$\int_0^\infty |g_{j,0}(b_1,\cdots,b_m,u,\xi)|d\left(\frac{-H_{\xi}(u)}{u}\right) < \infty,$$

which follows that $g_{j,0}(b_1,\dots,b_m,\xi)$ is well-defined.

Theorem 4.2. Let μ be as in Theorem 3.1. Then μ is a translation of a strictly $(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ -semi-stable distribution if and only if

$$\int_{S_{f}} (I - P_{j}) g_{j,0}(b_{1}, \dots, b_{m}, \xi) T_{j} \xi \lambda(d\xi) = 0 \text{ for } j \in J.$$
(4.2)

Proof. We first prove that (4.2) is a sufficient condition for a translation of a strictly (b_1, \dots, b_m, Q) – semi-stable distribution. Suppose that (4.2) holds. Since $(I-P_j)T_jg_1(b_1, \dots, b_m, \xi) = (I-P_j)g_{j,0}(b_1, \dots, b_m, \xi)T_j\xi$, the condition (4.2) gives $\int_{S_r} (I-P_j)T_jg_1(b_1, \dots b_m, \xi)\lambda(d\xi) = 0.$ This is written as

$$\int_{S_T} T_j g_1(b_1, \dots b_m, \xi) \lambda(d\xi) \in D_j.$$

Let $\widehat{V}_j = \text{kernel}(Q - \theta_j)$, $j = 1, \dots, q + 2r$. Let \widehat{V}_j be the orthogonal complement of \widehat{V}_j in the decomposition $V_j = \widehat{V}_j \oplus \widehat{V}_j$.

We claim that $I - \sum_{l=1}^{m} c_l b_l^Q : \widetilde{V}_j \rightarrow D_j$ is bijective map for $j \in J$.

To prove this, suppose that $\widetilde{v_j} \in \widetilde{V_j}$ and $\widetilde{v} \neq 0$. Then we have that

$$(I - \sum_{l=1}^{m} c_l b_l^Q) \widetilde{v_j} = \sum_{k=1}^{L_i - 1} (k!) (Q - \theta_j)^k \sum_{l=1}^{m} c_l \log b_l^k \quad \text{for } j \in J,$$

where L_j is a nonnegative integer such that $(Q-\theta_j)^{L_i}\widetilde{v_j}=0$ and $(Q-\theta_j)^{k}\widetilde{v_j}\neq 0$ for all $k=0,\cdots,L_j-1$. If $(I-\sum_{i=1}^m c_ib_i^Q)\widetilde{v_j}=0$, then

$$(I - \sum_{l=1}^{m} c_l b_l^Q) \widetilde{v_j} = \sum_{k=1}^{L_j - 1} (k!) (Q - \theta_j)^k \sum_{l=1}^{m} c_l \log b_l^k = 0,$$

which leads to $\widetilde{v_j} = 0$. From this we conclude that $I - \sum_{i=1}^m c_i b_i^Q$ is injective as a map from \widetilde{V}_j to D_j for $j \in J$. Using the fact that $\dim(D_j) = \dim(\widetilde{V}_j)$, we see that $I - \sum_{i=1}^m c_i b_i^Q$ is surjective as a map from \widetilde{V}_j to D_j .

For $j \in J$, there is a unique $\gamma_j \in \widetilde{V}_j$ such that

$$(I-\sum_{i=1}^{m}c_{i}b_{i}^{Q})\gamma_{i}=T_{i}\int_{S_{n}}g_{1}(b_{1},\cdots,b_{m},\xi)\lambda(d\xi).$$

Given $j \notin J$, we see that $(I - \sum_{i=1}^{m} c_i b_i^{\theta_i})(v_j) \neq 0$ for $v_j \neq 0$. This says that $(I - \sum_{i=1}^{m} c_i b_i^{\theta_i})$ is bijective. Hence there is a unique γ_j such that

$$(I-\sum_{l=1}^m c_l b_l^Q)\gamma_j = T_j \int_{S_r} g_0(b_1, \dots, b_m, \xi) \lambda(d\xi), \quad j \notin J.$$

Let $\gamma_j = 0$, $j \notin K \cup J$, and $c = \sum_{j=1}^{d+2r} \gamma_j$. Then $c \in \mathbb{R}^d$ and

$$(I - \sum_{i=1}^{m} c_i b_i^Q) c = (1 - \sum_{i=1}^{m} c_i b_i^Q) \sum_{i=1}^{q+2r} \gamma_i = \int_{S_r} (g_0 + g_1) (b_1, \dots, b_m, \xi) \lambda(d\xi).$$

This means that $\mu * \delta_{-\gamma+c} \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$.

To prove the converse, suppose that $\mu * \delta_{-\gamma+c} \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ for some c. From (4.1),

$$(I - \sum_{i=1}^{m} c_i b_i^Q) \sum_{j \in I} T_j(\gamma + c) = \int_{S_F} g_0(b_1, \dots, b_m, \xi) \lambda(d\xi)$$

and

$$(I-\sum_{l=1}^{m}c_{l}b_{l}^{Q})\sum_{i\in I}T_{i}(\gamma+c)=\int_{S_{r}}g_{1}(b_{1},\cdots,b_{m},\xi)\lambda(d\xi).$$

This implies that $\int_{S_r} g_0(b_1, \dots, b_m, \xi) \lambda(d\xi) \in D_j$ for $j \in J$, which gives

$$\int_{S_r} (I - P_j) g_{j,0}(b_1, \dots, b_m, \xi) T_j \xi \lambda(d\xi) = 0, \qquad j \in J.$$

Theorem 4.3. Let $OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q) = OSS(b, Q)$ for some b. If $\mu \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$, then μ is a translation of a strictly (b, Q)-semi-stable distribution.

Proof. Suppose that $\mu \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ with $(b_1, \dots b_m) \in A_m(0)$. Then $H_{\xi}(u) = 1$, which means that this μ is an operator stable distribution with exponent Q. Assume that $\theta_1 = 1$. Let N_1, N_2 , and k be integers, we see that

$$\int_{0}^{\infty} u^{-1} a(b_{l}, u, \xi) du = \lim_{N_{1} \to -\infty, N_{2} \to \infty} \int_{\begin{bmatrix} b_{l}^{N_{1}+1}, b_{l}^{N_{2}} \end{pmatrix}} a(b_{l}, u, \xi) u^{-1} du$$

$$= \lim_{N_{1} \to -\infty, N_{2} \to \infty} \sum_{k=N_{1}}^{N_{2}} \int_{\begin{bmatrix} b_{l}^{k+1}, b_{l}^{k} \end{pmatrix}} u^{-1} a(b_{l}, u, \xi) du$$

$$= \lim_{N_{2} \to \infty} \int_{\begin{bmatrix} b_{l}, 1 \end{pmatrix}} \frac{u^{-1}}{1 + |b_{l}^{N_{2}Q} u^{Q} \xi|^{2}} du - \lim_{N_{1} \to -\infty} \int_{\begin{bmatrix} b_{l}, 1 \end{pmatrix}} \frac{u^{-1}}{1 + |b_{l}^{(N_{1}-1)Q} u^{Q} \xi|^{2}} du$$

$$= \int_{\begin{bmatrix} b_{l}, 1 \end{pmatrix}} \frac{1}{u} du$$

$$= \log b_{l}$$

which yields that

$$g_{1,0}(b_1, \dots, b_m, \xi) = \int_0^\infty u^{-1} \sum_{l=1}^m c_l a(b_l, u, \xi) du = \sum_{l=1}^m c_l \int_{[b_l, 1)} u^{-1} du = \sum_{l=1}^m c_l \log b_l$$

Hence the condition (4.2) is written as

$$\int_{S_r} (I - P_1) T_1 \xi \sum_{l=1}^m c_l \log b_l \lambda(d\xi) = 0.$$

This gives $\int_{S_r} (I - P_1) T_1 \xi \lambda(d\xi) = 0$. From Theorem 3.1 in [12], this means that μ is a translation of strictly (1,Q)-stable.

Suppose that $\mu \in OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ with $(b_1, \dots b_m) \in A_m(\rho)$. Then $b_l = b^{m_l}$ and $H_{\xi}(bu) = H(u)$. Let $J_1 = \{ j \in J : b^{\theta_j} = b \}$. Using the tool used in Lemma 2.2 in [1], for $j \in J_1$, we can show that

$$\int_{0}^{\infty} u^{\theta_{i}} c_{i} a(b_{i}, u, \xi) d(\frac{-H_{\xi}(u)}{u}) = c_{i} \int_{[b_{i}, 1)} u \cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) + i c_{i} \int_{[b_{i}, 1)} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u})$$

for some integer n, where $\xi \in S_{\Gamma}$. Since

$$\int_{[b_{l}]} u\cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) = \sum_{i=0}^{m_{l}-1} c_{l} \int_{[b^{i+1},b^{i}]} u\cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u})$$

$$= \sum_{i=1}^{m} c_{i} m_{l} \int_{[b,1]} u\cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u})$$

and

$$\int_{[b_{i}]} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) = \sum_{i=0}^{m_{i}-1} c_{i} \int_{[b^{i+1}, b^{i}]} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) \\
= \sum_{i=1}^{m} c_{i} m_{i} \int_{[b, 1]} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}),$$

we have that

$$\int_{0}^{\infty} u^{\theta_{i}} \sum_{l=1}^{m} c_{l} a(b_{l}, u, \xi) d(\frac{-H_{\xi}(u)}{u}) \\
= \sum_{l=1}^{m} c_{l} \int_{[b^{m_{i}}, 1)} u \cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) + i \sum_{l=1}^{m} c_{l} \int_{[b^{m_{i}}, 1)} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) \\
= \sum_{l=1}^{m} c_{l} m_{l} \int_{[b, 1)} u \cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) + i \sum_{l=1}^{m} c_{l} m_{l} \int_{[b, 1)} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u})$$

for $j \in J_1$. Thus the condition (4.2) is written as

$$\int_{S_r} (I - P_j) T_j \xi \sum_{l=1}^m c_l m_l \left(\int_{[b,1)} u \cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) + i \int_{[b,1)} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) \right) \lambda(d\xi) = 0$$

for $j \in J_1$. This shows that

$$\int_{S_r} (I - P_j) T_j \xi \left(\int_{[b,1)} u \cos(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) + i \int_{[b,1)} u \sin(\frac{2n\pi}{\log b} \log u) d(\frac{-H_{\xi}(u)}{u}) \right) \lambda(d\xi) = 0, \quad j \in J_1.$$

By Theorem 2.2. in [1], this says that μ is a translation of a strictly (b, Q)-semi-stable distribution.

References

- [1] Choi, G. S. (2001). Characterization of strictly operator semi-stable distributions, *J. Korean Math. Soc.*, Vol. 38, 101–123.
- [2] Choi, G. S. (2000). Representation of operator semi-stable distributions, *Bull. Korean Math. Soc.*, Vol. 37, 135-152.
- [3] Choi, G. S. (1995). Characterization of some classes of multidimensional distributions related to semi-stable distributions, *Japan. J. Math.*, Vol. 21, 335-353.
- [4] Chorny, V. (1989). Characterization of operator-semi-stable distributions, *Mathematica Slovaca*, Vol. 39, 99-104.
- [5] Krapavickait e, D. (1980) Generalized semistable probability distributions, Litovsk.Mat.Sb., 20–2(1980), 57–68;English translation, *Lithuanian Math.J.*, 20, 111–118.
- [6] Krapavickait e, D. (1980) Certain classes of probability distributions, Litovsk. Mat. Sb., 20-4, 79-86; English translation, *Lithuanian Math. J.*, 20, 298-303.
- [7] Jajte, R. (1977) Semi-stable probability measures on \mathbb{R}^N , Studia Math., 61, 29-39.
- [8] Lévy, P. (1954). Theorie de l'addition des variables aleatoires, 2^e ed., Gauthier Villars, Paris 1^e ed. (1937).
- [9] Linnik, Y. (1943). Linear forms and statistical criteria(in Russian), *Ukrain.Math. Statist. and Pro.*, Vol. 5, 207-243 and 247- 290; English translation (1962),

- Selected Translations in Math. Statist. and Pro., Vol. 3, 1-90.
- [10] Ramachandran, B. and Rao, C. R. (1970). Solution of functional equations arising in some regression problems and a charaterizations the Cauchy law, *Sankhya*, *Ser. A*, Vol. 32, 1-30.
- [11] Sato, K.(1999). Lévy *Processes and Infinitely Divisible Distributions*. Cambridge University Press, Cambridge.
- [12] Sato, K. (1987). Strictly operator-stable distributions, *J. Multivar. Anal.*, Vol. 22, 278-295.
- [13] Sato, K. (1985). Lectures on multivariate infinitely divisible distributions and operator-stable processes, *Technical Report Series*, *Lab.Res. Statist. Probab.*Carleton Unvi. and Univ Ottawa, No.54, 1985.
- [14] Sato, K. and Yamazato, M. (1985). Completely operator-selfdecomposable distribut-ions and operator-stable distributions, *Nagoya. Math. J.*, Vol. 97, 71-94.
- [15] Sharpe, M. (1969) Operator-stable probability distributions on vector groups, *Trans. Amer. Math. Soc.* 136, 51-65.
- [16] Shimizu, R. (1968). Characteristic function satisfying a functional equation I, *Ann. Inst. Statist. Math.*, Vol. 20, 187-209.
- [17] Shimizu, R. (1978) Solution to a functional equation and its application to some characterization problem, Sankhy a, Ser.A, 40, 319-332.
- [18] Shimizu, R and Davies, L. (1981) General characterization theorems for the Weibull and stable distributions, *Sankhy a*, *Ser.A*, 43, 282-310.

[Received November 2002, Accepted March 2003]