References
- Proc. Amer. Math. Soc. v.69 CR-submanifolds of a Kaihler manifold Ⅰ A.Bejancu https://doi.org/10.2307/2043207
- Kordai Math. Sem. Rep. v.27 Semi-invariant immersion D.E.Blair;G.D.Luddens;K.Yano https://doi.org/10.2996/kmj/1138847256
- Trans. Amer. Math. Soc. v.269 Focal sets and real hyprsurfaces in complex projective space T.E.Cecil;P.J.Ryan https://doi.org/10.2307/1998460
- Acta. Math. Hungar. v.80 Real Hypersurfaces of a complex projective space in terms of the Jacobi operators J.T.Cho.;U.H.Ki https://doi.org/10.1023/A:1006585128386
- J. Differential Geom v.3 Reduction of the codimension of an isometric immersion J.Erbacher
- Nihonkai Math. J. Jacobi oprators on a semi-invariant submand submanifold of codimension 3 in a complex projective space U.H.Ki;H.Song
- Kyungpook Math. J. v.40 Semi-invariant submanifolds with lift-flat normal connection in a compex projective space U.H.Ki;H.J.Kim
- Kyungpook Math. J. v.31 Some charqcterizations of real hypersurface of type A U.H.Ki;S.J.Kim;S.B.Lee
- Nihonkai J. v.11 Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space U.H.Ki;H.Song;R.Takagi
- Real hyprsurfaces in compilex space fom, in Tight and Tant submanifolds R.Niebergall;P.J.Ryan;T.E.Cecil(ed.);S.S.Chern(ed.)
- Trans. Amer. Math. Soc. v.212 On some real hypesurfaces of a complex projective space M.Okumura https://doi.org/10.2307/1998631
- Geometriae Dedicata v.7 Normal curvature and real submanifold of the complex projective space M.Okumura
- Colloq. Math. Soc. Janos Bolyai v.56 Codimension reduction problem for real submanifolds of complex projective space M.Okumura
- Tsukuba J. Math. Some differential-geometric properties of R-spaces H.Song
- Osaka J. Math. v.10 On homogenous real hypersurfaces in a complex projective space R.Takagi
- J. Math. Soc. v.27 Real hypersurfaces in a complex projective space with constant principal curvatures Ⅰ,Ⅱ R.Takagi https://doi.org/10.2969/jmsj/02710043
- Sugaku v.16 Relations between the theory of almost complex spaces and that of almost contact spaces Y.Tashiro
- Kodai Math. Sem. Rep. v.29 On(f,g.u.v.w.λ,μ,ν)-structrue satisfiying λ²+ u² + v² = 1 K.Yano;U.H.Ki https://doi.org/10.2996/kmj/1138833653
-
Birkh
\"{a} user CR submanifolds of Kaehlerian and Sasakian manifolds K.Yano;M.Kon