DOI QR코드

DOI QR Code

ON SOME SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX PROJECTIVE SPACE

  • Published : 2003.04.01

Abstract

In this paper, We characterize a semi-invariant sub-manifold of codimension 3 satisfying ∇$\varepsilon$A = 0 in a complex projective space CP$\^$n+1/, where ∇$\varepsilon$A is the covariant derivative of the shape operator A in the direction of the distinguished normal with respect to the structure vector field $\varepsilon$.

Keywords

References

  1. Proc. Amer. Math. Soc. v.69 CR-submanifolds of a Kaihler manifold Ⅰ A.Bejancu https://doi.org/10.2307/2043207
  2. Kordai Math. Sem. Rep. v.27 Semi-invariant immersion D.E.Blair;G.D.Luddens;K.Yano https://doi.org/10.2996/kmj/1138847256
  3. Trans. Amer. Math. Soc. v.269 Focal sets and real hyprsurfaces in complex projective space T.E.Cecil;P.J.Ryan https://doi.org/10.2307/1998460
  4. Acta. Math. Hungar. v.80 Real Hypersurfaces of a complex projective space in terms of the Jacobi operators J.T.Cho.;U.H.Ki https://doi.org/10.1023/A:1006585128386
  5. J. Differential Geom v.3 Reduction of the codimension of an isometric immersion J.Erbacher
  6. Nihonkai Math. J. Jacobi oprators on a semi-invariant submand submanifold of codimension 3 in a complex projective space U.H.Ki;H.Song
  7. Kyungpook Math. J. v.40 Semi-invariant submanifolds with lift-flat normal connection in a compex projective space U.H.Ki;H.J.Kim
  8. Kyungpook Math. J. v.31 Some charqcterizations of real hypersurface of type A U.H.Ki;S.J.Kim;S.B.Lee
  9. Nihonkai J. v.11 Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space U.H.Ki;H.Song;R.Takagi
  10. Real hyprsurfaces in compilex space fom, in Tight and Tant submanifolds R.Niebergall;P.J.Ryan;T.E.Cecil(ed.);S.S.Chern(ed.)
  11. Trans. Amer. Math. Soc. v.212 On some real hypesurfaces of a complex projective space M.Okumura https://doi.org/10.2307/1998631
  12. Geometriae Dedicata v.7 Normal curvature and real submanifold of the complex projective space M.Okumura
  13. Colloq. Math. Soc. Janos Bolyai v.56 Codimension reduction problem for real submanifolds of complex projective space M.Okumura
  14. Tsukuba J. Math. Some differential-geometric properties of R-spaces H.Song
  15. Osaka J. Math. v.10 On homogenous real hypersurfaces in a complex projective space R.Takagi
  16. J. Math. Soc. v.27 Real hypersurfaces in a complex projective space with constant principal curvatures Ⅰ,Ⅱ R.Takagi https://doi.org/10.2969/jmsj/02710043
  17. Sugaku v.16 Relations between the theory of almost complex spaces and that of almost contact spaces Y.Tashiro
  18. Kodai Math. Sem. Rep. v.29 On(f,g.u.v.w.λ,μ,ν)-structrue satisfiying λ²+ u² + v² = 1 K.Yano;U.H.Ki https://doi.org/10.2996/kmj/1138833653
  19. Birkh\"{a}user CR submanifolds of Kaehlerian and Sasakian manifolds K.Yano;M.Kon