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ON SOME SEMI-INVARIANT
SUBMANIFOLDS OF CODIMENSION 3
IN A COMPLEX PROJECTIVE SPACE

SEONG-BAEK LEE AND S00-JIN KIM

ABSTRACT. In this paper, We characterize a semi-invariant sub-
manifold of codimension 3 satisfying V:A = 0 in a complex pro-
jective space CP"*1 where V¢ A is the covariant derivative of the
shape operator A in the direction of the distinguished normal with
respect to the structure vector field &.

0. Introduction

A CR submanifold M is called a semi-invariant submanifold of a
Kaehlerian manifold with complex structure J if it is endowed with a
pair of mutually orthogonal and complementary differentiable distribu-
tion (A, A1) such that dim A+ = 1 and the unit normal in JAZL is
called a distinguished normal ([1], [2], [17]). In this case, M admits an
induced almost contact metric structure (¢,&,g). A typical example of
a semi-invariant submanifold is real hypersurfaces. But, new examples
of nontrivial semi-invariant submanifold with higher codimension in a
complex projective space are constructed in [9] and [14].

For the real hypersurface of a complex space form, many results are
known ([3], (8], [10], [11], [15], [16] etc.). One of them Takagi ([15])
classified homogeneous real hypersurfaces of a complex projective space
by means of six model spaces of type Ay, Az, B,C, D and E, further he
explicitly write down their principal curvatures and multiplicities in the
table in [16]. Cecil and Ryan ([3]) extensively studied a real hypersurface
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which is realized a tube of constant radius r over a complex submani-
fold of a complex projective space CP™ on which £ is principal curvature
vector with principal curvature o = 2cot2r and the corresponding focal
map ¢, has constant rank. From this point of view, Okumura ([11})
characterized real hypersurface of type A; and A, in CP" by the prop-
erty that the shape operator A and structure tensor field ¢ commute.
From the different point of view, Ki, Kim and one of the present authors
give another characterization of real hypersurfaces of type A; and A,
of CP™ satisfying V¢ A = 0, where V denotes the covariant derivative
with respect to the structure vector field £. Namely, they proved the
following:

THEOREM A ([8]). Let M be a connected real hypersurface of CP"
satisfying V¢A = 0. Then M is a Hopf real hypersurface. Further if
o # 0, then M is locally congruent to one of the following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyper-
plane CP™~!, where 0 <r < § and r # ©/4),

(A3) a tube of radius r over a totally geodesic CP*, (1 <k <n—2),
where 0 < 7 < 7/2 and r # /4.

On the other hand, semi-invariant submanifolds of codimension 3 in a
complex projective space CP"*! have been investigated in [6],[7],[9],[18]
and so on by using properties of induced almost contact metric structure
and those of the third fundamental form of the submanifold. One of
them, Ki, Song and Takagi ([9]) assert the following:

THEOREM B ([9]). Let M be a real (2n — 1)-dimensional semi-invari-
ant submanifold of codimension 3 in a complex projective space CP™+!
such that the third fundamental form satisfies dn = 26w for a certain
scalar 6(< ¢/2), where w(X,Y) = g(X, ¢Y) for any vectors X and Y on
M. If the structure vector field £ is an eigenvector for the shape operator
A in the direction of the distinguished normal, then M is a Hopf real
hypersurface in a complex projective space CP™.

The main purpose of the present paper is to extend Theorem A under
certain conditions on a semi-invariant submanifold of codimension 3 in
CP™*+! that is, we prove

THEOREM. Let M be a connected real (2n — 1)-dimensional semi-
invariant submanifold of codimension 3 in CP™+! such that the third
fundamental form n satisfies dn = 20w for a certain scalar 6(< c/2),
where 2-form w is defined by w(X,Y) = g(X, ¢Y). If M satisfies VA =
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0, then M is a Hopf real hypersurface of CP™. Further, if g(A¢,€) # 0,
then M is locally congruent to one of the following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyper-
plane CP"™1, where 0 <r < 7/2 and r # 7 /4),

(A) a tube of radius r over a totally geodesic CP*(0 < k < n —2),
where 0 < r < m/2 and r # 7 /4.

All manifolds in this paper are assumed to be connected and of class
C*°, and the dimension of semi-invariant submanifold is greater then 2.

1. Preliminaries

In the following, we review fundamental properties of a submanifold
of codimension 3 in a complex projective space ([9]).

Let M be a real 2(n + 1)-dimensional Kaehlerian manifold equipped
with parallel almost complex structure J and a Riemannian metric ten-
sor G and covered by a system of coordinate neighborhoods {V;34}.

Let M be areal (2n-1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {V; "} and immersed isometrically
in M by the immersion i : M — M.

Throughout this paper the following convention on the range of in-
dices are used, unless otherwise stated:

A,B,C,"':1,2,"' 72(n+1)7 i7ja"':1727'“ 72n_1

The summation convention will be used with respect to those system
of indices. In the sequel we identify (M) with M itself and represent
the immersion by y* = y4(z").

We put

Bi A= BiyA, 81 = 8/81‘2

and denote by C, D and FE are three mutually orthogonal unit normals to
M. Then denoting by g the fundamental metric tensor with components
gji on M, we have g;; = G(B;, B;) since the immersion is isometric,
where we have put B; = (BjA).

As is well-known, a submanifold M of a Kaehlerian manifold M is
said to be a CR submanifold ([1], [19]) if it is endowed with a pair
of mutually orthogonal and complementary differentiable distribution
(A, At) such that for any p € M we have JA, = A,, JA,™ C M,*,
where Mp'L denotes the normal space of M at p. In particular, M is said
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to be a semi-invariant submanifold ([2], [17]) provided that dimA~L = 1.
In this case the unit vector field in JAL is called a distinguished normal
to the semi-invariant submanifold and denoted this by C ([17]). Then
we have

(1.1) JB;=¢;"By+&C, JC=—-¢"B,, JD=-E,JE=D,

where we have put ¢;; = G(JB;,B;),& = G(JB;,C),&" being asso-
ciated components of &, (see [9]). A tensor field of type (1,1) with
components ¢;" will be denoted by ¢. By the Hermitian property of J,
it is seen that ¢;; is skew-symmetric, and that

¢i"p " = =8+ &gt € =0, 47 =0,
9rs®; 0" = g5 — &, &E =1,

namely, the aggregate (¢, €, g) defines almost contact metric structure.

Denoting by V; the operator of van der Waerden-Bortolotti covariant
differentiation with respect to the induced Riemannian metric tensor g,
the equation of Gauss for M of M is obtained:

(1.2) V;B; = A;;C + K;;D + Lj;E,

where Aj;, K;; and Lj; are components of the second fundamental forms
in the direction of normals C, D, E respectively. Equations of Wein-
garten are also given

VjC = mAthh + ljD —+ ij,
(1.3) V;D = —K;"B, —1;C + n;E,
V;E =~L;"By - m;C —n;D,

where A = (Ajh),A(g) = (K; ") and Az = (Ljh), which are related by
Aji = Ajrgif,«,Kji = Kj ng"r' and Lji = Ljng'r respectively, and lj,mj
and n; being components of the third fundamental forms.

In the sequel, we denote the normal components of V;C by V+C.
The distinguished normal C is said to paraliel in the normal bundle if
we have V+C = 0, that is, [; and m; vanish identically.

Since J is parallel, by differentiating (1.1) covariantly along M and
using (1.1), (1.2) and (1.3), and by comparing the tangential and normal
parts, we find (see [18])

(1.4) Vi " = —A;E" + AR¢,
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(1.5) Vi&i=—Ajr¢;",
(1.6) Kji=—Ljr¢," — m;&;,
(1.7) Lji = Kjr ¢, " + ;.

There is no loss of generality such that we may assume T, A3y = 0

(see [9]).
Now we put U; = £"V,;{;. Then U is orthogonal to the structure
vector €. Because of (1.5) and properties of the almost contact metric

structure, it follows that

(18) ¢jiUr = Ajv"gr - aéja

(1.9) U'V;€ = A2 — adj €,

where we have put a = A4;;£7¢°.

REMARK. In what fo_ll(‘)ws7 to write our formulas in convention forms,
we denote by 8 = Ajfgjél,TTA(z) =k and v = (V k)¢

From (1.8), we get g(U,U) = B3—a?. Thus we easily see that A = af
if and only if 3 —a® = 0.

Differentiating (1.8) covariantly along M and making use of (1.4) and
(1.5), we find

(1.10) &(ArrU™+Via)+¢;-Vi U = ETVkAjT—AjrAksfbrs-i-aAkr(bjT,
which shows that
(1.11) (vars)frfs = 2AkTUT + Via.

In the rest of this paper we shall suppose that M is a Kaehlerian
manifold of constant holomorphic sectional curvature ¢, which is called
a complex space form. Then equations of Gauss and Codazzi are given
by

c
Ryjin = Z(gkhgji ~ Gingki + OknPji — OjnPri — 20k Din)
(1.12) + AkhAji — AjhAki + Kthji — thKki
+ LgnLj; — Ljp Ly,
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VkAjZ' — VjAki - leji + leki — kaji + mijz-

c
(1.13) = 7 (ExPii = &iPri — 2ids),
(1.14) ViKj; — ViKy = UjAgi — lgAji + ngLji — nj Ly,
(1.15) ViLji — VjiLi; = mjAp; — mpAj — np K + 1 Ky,

where Ry, are covariant components of the Riemann-Christoffel cur-
vature tensor of M, and those of the Ricci by

(1.16) Vklj — lek = AjTKkT — AkTKj T+ mMiNg — MENj,
(1.17) Vkmj — ijk = AjTLkT — AkTLjT -+ njlk — nklj,

C
(1.18) anj — ank = KjTLkT — KkTLjT + ljmk — lkmj + §¢kj-

The normal connection of a semi-invariant submanifold M of codi-
mension 3 in a complex projective space CP""! is said to be L-flat

if it satisfies dn = fw, namely, V;n; — V;n; = $¢;;, where d de-

notes the exterior differential operator and the 2-form w is defined by
w(X,Y) = g(X, ¢Y) for any vectors X and Y on M ([12]). For a semi-
invariant submanifold with L-flat normal connection, it is known that

THEOREM K ([7]). Let M be a semi-invariant submanifold of codi-
mension 3 with L-flat normal connection in CP™t!. If A¢ = af, then
we have A(z) = A(3) =0.

From (1.6) and (1.7), we have

(119) Kijr = —my, LjTgr = lj,

(1.20) mpE =—k, [.£ =0
because of 1. A(3) = 0. Further we obtain

(1.21) Girl” =my + k&, puem” = -1,

(122) KjT'Li T+ KZ‘rLjT + ljmi + lz'mj =0.
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2. Semi-invariant submanifolds satisfying dn = 26w

In this section we shall suppose that M is a semi-invariant subman-
ifold of dodimension 3 in a complex projective space CP"*t! and that
the third fundamental form n satisfies dn = 26w for a certain scalar 0
on M, namely,

(2.1) Vin; — Vin; = 20¢;;.
Then from (1.18) we have
K L," = KoL +1m; — Lim; = 2(6 — 2)%,
which together with (1.22) yields
(2.2) KLy " +1ymy = (0 — §)¢ij-

We notice here that 6 is constant if n > 2 (see [9]).
Further, Ki, Song and Takagi proved the following:

LemMa 2.1 ([9]). Let M be a semi-invariant submanifold of codi-
mension 3 in CP"! satisfying (2.1). If 6 # §, then we have VjLC =
—k&E on M. Futher if AE = of, then the distinguished normal is
parallel in the normal bundle.

In what follows, we assume that M satisfies (2.1) with # # § and
n > 2. Then by Lemma 2.1 and (1.3), we have

(2.3) lj = 0, m; = —k‘fj.

Thus (1.6), (1.7) and (2.2) turn out respectively to

(2.4) ’ Ljr¢," = —Kj; + k&€,
(2.6) KjpL;" = (0 — $)gy;.

4
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From the last two equations, it follows that
2 c
(2.7) L= (6 - Z)(gji = &)

Furthermore, if we make use of (2.3), then the other structure equa
tions (1.13) ~ (1.17) are reduced respectively to

(2.8) ViAji — VA = k(&L — &Lj;) + g(ékd’ji — &0k — 260k5),
(2.9) ViKji — Vi Ky = ngLj; — njLgs,

(2.10) ViLji — ViLks = k(§pAji — £ ARs) — K + 15 Kii,
(2.11) A K" — A K7 = k(niéy — niée),

(212) Aerk:r - Aerjr = gkvjk; - gjvkk: + k(Akr¢jT - AJ'TQSkT)a
where we have used (1.5). Because of (1.19) and (2.3), it is clear that
(213) KjrgT = kﬁj, Lj'rér =0.

Multiplying (2.11) and (2.12) with £€* and summing for the index k,
we have respectively

(2.14) §CARK;" =kAjr " + k(ny — pé;),

(2.15) KerT = I/§j - V]k + k‘U]

by virtue of (1.8), (2.4) and (2.13), where u = n’¢;.
Transforming (2.14) by ¢,” and taking account of (1.8), (2.5), (2.6)
and (2.13), we find

(2.16) K; U = k(orrn” — Ug),
which together with (2.15) implies that

(217) VJ]C = I/fj - k(d)jrnr - QUJ)
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If we transform (2.12) by ¢;* and make use of (2.4) and (2.17), then
we obtain

AsrLjT@ ® 4+ A;rK; "= k{(nl - Hfi)fj + 2§j(AiT§T - af;)
+ 2£iAjr€T - Aji - Asrql)jrd)i S}a

or, use (2.11)
(2.18) AeL;"0;° = Ao LT 0;°.
Since 6 is constant if n > 2, by differentiation (2.7) covariantly gives
LirViLy” + LipVily” = (0= D)6 Aud:” + EiAird;"),

or using (2.6), (2.10), (2.13), (2.16) and the last equation, it is verified
that ([6])

(0= DAty + Arrd,") + (K +6 = D) (Uiks + Vi)

(2.19)
+ k{Ak-L;" + Air L, — k(&spprn” + Exppirn”)} = 0.

3. Semi-invariant submanifolds satisfying V. A =0

We continue now, our arguments under the same hypotheses dn =
20w for a scalar 0(# §) as in Section 2. Furthermore, suppose, through-
out this paper, that V¢ A = 0. Then by (2.8) we have

- c
(3.1) §'V;Aiy =kLj; — Z¢ji
because of (2.3).

REMARK. Let H denote by the second fundamental form in the direc-
tion of the distinguished normal C'. Then by definition, the Lie derivative
of H with respect to the structure vector field £ is given by

LgAji = fTVTAji =+ (ngr)Air + (Vifr)Ajry

which together with (1.5) implies that L¢A;; = §"V,.Aj;. Thus, the
condition V¢ A = 0 is equivalent to L¢H = 0.
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Because of (2.13) and (3.1), it follows that (V;A,5)(7¢° = 0. Differ-
entiating this covariantly, and using (3.1), we find

c
(VkvjArs)Eré-s + 2vk§T(kL]r - Z¢jr) =0,
which together with (1.5) and (2.4) yields
c
(ViV;jA)ETE = 2kA, K — 2(K* + )5 Ak’

from which, taking the skew-symmetric part and using the Ricci identity
for A,

Rigis( A €)E = (K + )6 A0€ = 6 Asn€") + K2 (g — ),
or, using (1.12), (2.13) and (2.14),

(A€M (A2€) — (ARr€7)(4;2€°) = 0.
Hence we have
(3.2) ad;2E" = BA;E".

We set 2 = {p € M : B3(p) — a?(p) # 0}, and suppose that Q is
nonempty. In the sequel, we discuss our arguments on the open set ) of
M. Then from (3.2) we have
(3.3) A26T = NA; LT,

where the function A given by a) = 3 is defined.
Now, we put

(3.4) A]’rfr = a; + pWj,
where p is a function on M which does not vanish on 2 and W is a unit
vector field orthogonal to the structure vector field £&. Then we have

oU = —pW and hence

(3.5) P W™ = ~Uj,
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where p? = 8 — o because of (1.8). Further with (3.3) we get
(3.6) AW = pt; + (A= Q)W
by virtue of p # 0 on . Hence we have
(3.7) AZWT = MA; W
Because of (1.8), (2.4) and (3.4) we have
(3.8) K;;U" = pL;W",

where we have used (3.4) and (3.6).

Differentiating (3.3) covariantly and making use of (1.5), (3.1) and
(3.4), we find
(3.9)

c c r
P(VeAj )W = (ViA) A" + (A = a)(kLjk + 7 0jk) + 7 Air s
— kLkTAjT + AjEAks¢rS - AAjrAks¢m-

Multiplying (3.9) with ¢¥ and summing for k, and taking account of
(2.13) and the hypotheses VA = 0, we obtain

A2UT = MA;, U™ 4+ dA(6) A€ =0,

where we have put dA\(§) = £'V; ), which unable us to obtain adA(¢) = 0
and hence dA(§) = 0. Therefore it follows that

(3.10) AU =AU

Applying (3.9) by W7 and making use of (2.13), (3.6) and (3.7), we
find

(ViAr)W™W?® = Vi because of p # 0 on Q. From this and (2.8),
we see that

We(VsAjr )W = VX + k(L s WW?)E;.

Multiplying (3.9) with pW* and summing for k, and using (3.4), (3.8),
(3.10) and the last equation, we get

PN+ k(L WW)E} + {A; KU — (A — a)K;,UT}

(3.11) c
= pd}‘(W)Ajrgr -+ Z{AerT - ()‘ - a)Uj}'
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If we take the skew-symmetric part of (3.9) and use (2.8), (2.12) and
(3.8), then we get

(kV,k — kK, U™ — EUj)gk — (kVik — kK U — gUk)gj
= (VeN) A€ — (V;0) Apré” + g()\ ~ &)k
— (R + D (A d;” = Ayrdy”)
+ Ayl Ars®"® — Ayt Ajod" — 22 Ajr Apsd™,

which, applying &/ and making use of (2.13), (2.15), (3.4) and(3.10),
(3.12) aV;\ = 26K U" + ng.
Since we have p? = a(\ — a), (3.11) turns out to be
B{A; K U + (A= )K,UT) = pdAW) Age€” — ph(K U"WOE,
+ 54507 Zc()\ — Q)

where we have used (3.8) and (3.12).
On the other hand, transforming (2.19) by pW* and taking account
of (3.5), (3.6) and (3.8), we find

k{A," KU+ (A— a)K,;,:U"}
+(6- E){A"U’“ — (A= a)U;} — K (nU)g; = 0.
Combining the last two equations, it follows that
PAAW) A" — k{k(nU") + pK, ;U W*}¢;
+0A;,UT — (0 + g)()\ —a)U; =0,

which implies dA(W) = 0 and hence k{k(n,U?) + pK,.;U"W*} = 0 on
2. Therefore we have

(3.13) 0A; U = (0 + g)(/\ — a)U;.
Thus § = 0 is not impossible on € and thus we can put

(3.14) A;UT =705,
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where the function 7 given by 07 = (8 + §)(A — ) is defined. From
(3.10) and (3.16), it is seen that (A — 7)AU = 0.

Now, suppose that A — 7 # 0 on Q. Then we have AU = 0 on this
set. Thus, (3.13) tell us that 0 - £ = 0. However, we see, using (2.7),
that  — 7 > 0. It is contradictory. Thus, we have A = 7 on §2. Hence
we obtain A+ (6 + £)a = 0. Differentiating this covariantly and taking
account of (3.12), we find

(3.15) %K, U™ + ng — AV,a = 0.

On the other hand, it is, using (1.11) and (3.1), clear that 24,,U" +
Vja = 0, which connected with (3.14) implies that

(316) VjOz = —2AUJ’

because of the fact that 7 = A.
From (3.15) and (3.16), it follows that

KK U™+ (A2 + E)Uj =0.
Therefore, k = 0 is not impossible on £ and hence it is seen that
(3.17) K; . U" = zUj,

where we have put

(3.18) kz+ A2 + 2 =0.

Transforming (3.17) by ¢, and taking account of (2.5), we find
(3.19) LiTUT = .’E¢)¢TUT.
Because of (2.6), (3.17) and (3.19), it is verified that

(3.20) P =0-

o

If we take account of (3.17), then (2.15) is reduced to V;k = v§; +
(k — z)U;. Differentiating (3.18) covariantly and using this, we obtain

z{v€; + (k -~ 2)U;} + 2AV;A = 0,
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which together with dA(§) = 0 gives v = 0. Thus, we have
(3.21) ij = (k — :E)UJ

If we apply (2.19) by U? and make use of (3.3), (3.14) with 7 = ),
(3.19) and (3.20), then we find

z{az + 2A — @)k} ( Ak &" — aéy) =0,
which connected with (3.18) implies that
(3.22) az + (2k—a)k =0.

Differentiating (3.18) covariantly, and using (3.12), (3.17),(3.21) and
(3.22), we get (3kx + §5)U; = 0, which together with (3.18) implies that
A2+ 15 = 0, a contradiction. Thus, {2 is empty. So we see, using Lemma
2.1, that the distinguished normal is parallel in the normal bundle. Sum-
ming up we have

LEMMA 3.1. Let M be a real (2n — 1)-dimensional semi-invariant
submanifold of codimension 3 in CP™*! satisfying dn = 20w for a certain
scalar 0 # 5. If M satisfies V¢ A = 0. Then the distinguished normal is
parallel in the normal bundle.

4. Proof of theorem

Let M be a connected real (2n—1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 satisfying dn = 26w for a certain scalar
f <35 in CP"*!. Suppose that V¢A = 0. Then by Lemma 3.1 we have
k = 0 on M. Thus (2.3) tells us that the distinguished normal C is
parallel in the normal bundle. Hence, by Lemma 4.1 of [9], we have
A2y = A(s) = 0. Therefore, by the reduction theorem in [5], [13], M is
a real hypersurface in a complex projective space CP™. Since we have
V+LC =0, equations (1.13) and (3.1) are reduced respectively to

ViAj — ViAg = §(§k¢ji — & Prs — 26 Pr5)s

c
§'V;A;, = —Zcbji-

Using (1.4), (1.5) and above two equations, it is proved in [8] that
g(U,U) = 0. Hence we have A¢p = ¢A. Thus, by Theorem A we have
our Theorem.
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