DOI QR코드

DOI QR Code

Lp ESTIMATES WITH WEIGHTS FOR THE (equation omitted)-EQUATION ON REAL ELLIPSOIDS IN Cn

  • Published : 2003.04.01

Abstract

We prove weighted L$^{p}$ estimates with respect to the non-isotropic norm for the (equation omitted)-equation on real ellipsoids, where weights are powers of the distance to the boundary. The non-isotropic norm is smaller than the usual norm, by a factor which is equal to the distance to the boundary in the complex tangential component and which is equal to the m-th root of the distance to the boundary in the complex normal component. Here n is the maximal order of contact of the boundary of the real ellipsoid with complex analytic curves.

Keywords

References

  1. Kyushu J. Math Optimal non-isotrognic $L^p$ esimates wih weights for the $\={∂}$-prolem on strictly psedocanvez domains Heungju Ahn;H.R.Cho
  2. Ann. Inst. Fourier v.32 Henkin-Ramirez formulas with weight factors B.Berndtsson;M.Andersson
  3. Ann. Inst. Fourier v.32 Solutions de l'equatoon $\={∂}$ et zeros de la classe Nevanlinna dans certains domanes faiblement pseudo-convexes A.Bonami;P.Charpentier https://doi.org/10.5802/aif.894
  4. Pacific J. Math. v.199 Zero sets of functures in the Nevanlinna or the Nevanlinna-Djrbachian clases A.Cumenge https://doi.org/10.2140/pjm.2001.199.79
  5. Manuscripta Math. v.56 Sharp Hoider estimates for $\='{∂}$ on elipsoids K.Diederich;J.E. Fornaess;J.Wiegerinck https://doi.org/10.1007/BF01168502
  6. Math. USSR Sb. v.35 Zeros of Holomorphic functions of finite order and weighted estimates for solutions of the $\='{∂}$-equation A. Dautov;G.M.Henkin https://doi.org/10.1070/SM1979v035n04ABEH001551
  7. Real analysis G.B.Folland
  8. Holomorphic functions and integral representations in several complex variables M.Range
  9. Trans. Amer. Math. Soc. v.324 Optimal Hoilder aqnd $L^p$ estimates for ∂ on the boundaries of real elipsoids in Cⁿ M.C.Shaw https://doi.org/10.2307/2001504