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L? ESTIMATES WITH WEIGHTS FOR THE
0-EQUATION ON REAL ELLIPSOIDS IN C*

HeunGJU ABN

ABSTRACT. We prove weighted LP estimates with respect to the
non-isotropic norm for the H-equation on real ellipsoids, where
weights are powers of the distance to the boundary. The non-
isotropic norm is smaller than the usual norm, by a factor which
is equal to the distance to the boundary in the complex tangential
component and which is equal to the m-th root of the distance to
the boundary in the complex normal component. Here m is the
maximal order of contact of the boundary of the real ellipsoid with
complex analytic curves.

1. Introduction

In this paper we will study weighted LP estimates for the d-equation
on real ellipsoids Q@ = {z = x4+ /-1y € C" : p(z) = Z;L:l(:c]z-“j +
y?”j) -1 <0, pj,v; € N}. Let m = maxi<j<, min{2u;,2v;}. Then
() is of finite type m in the sense that m is equal to the maximal order
of contact of the boundary of Q with complex analytic curves. For a
differential form of type (p,q), f = 31— s1=q f17d2" AdZ7 and z € Q
we define the isotropic and non-isotropic norms of f at z

HOED DOl
F@la = 1S ()] + lo(2)|719p(2) A £ (2)],

respectively. If 1 < p < oo and 0 < a < oo, we define a non-isotropic
LP space L?(Q,| - |n) with weight « to be the set of all (0,1)-forms f
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satisfying

sup p(2)[* 7 (2)la < o0 if p= o0

Ifllp,a0 = :
( [ @l dV) coo if1<p<oo
0

and LP space L? (Q?) with weight « to be the set of all measurable func-
tions ¢ satisfying

sup lo(2)]* Hg(2)| < o0 if p = oo

Hgl!p,a = ;
(/Q lg(2)P|p(2)|* 7t dV) <oo ifl<p<oo

Now we can state our main theorem.

‘MaiN THEOREM. Let Q2 and m be as above. Let f € LE(Q,]-|q) be
a 0-closed form of type (0,1). If 1 <p < o0 and a > 0, or if p = 0o and
o > 1 then there exists a solution u € LE(2) for Ou = f in § such that

Hqu,a < Cp,a“f”p,a,ﬂ'

For strongly pseudoconvex domains, similar results were studied by
Henkin-Dautov [6] and Ahn-Cho [1]. If the domain is strongly pseudo-
convex, then the non-isotropic norm at z is similarly defined except that
we replace the weight |p(z)|= by |p(z)|2. The LP estimates without
weights for the 3 are well-known [8].

Bonami and Charpentier [3] proved non-isotropic L! estimates for the
O-equation on complex ellipsoids. Complex ellipsoids are of finite strict
type, whereas real ellipsoids are only of finite type but not of strict type.

For real ellipsoids the sharp Holder estimates for the  were obtained
by Diederich-Fornaess-Wiegerinck [5] and optimal LP and Holder esti-
mates for the 9, were proved by Shaw [9] using the integral kernel. Our
theorem is in spirit similar to Shaw’s one but there are two differences:
First we obtain weighted L? estimates with respect to the non-isotropic
norm | - |o where weights are powers of the distance to the boundary.
Second to solve the f-equation we use weighted kernels which were con-
structed by Berndtsson and Andersson [2].

Recently Cumenge [4] proved non-isotropic L' estimates on convex
domains of finite type.
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2. Construction of a solution operator for the 0

By a linear holomorphic change of coordinates we can always assume
that v; < p;. In this section we introduce the “right” support function
constructed by Diederich-Fornaess-Wiegerinck [5] and with this support
function we obtain a solution operator for the 9-equation.

To define a support function we introduce new notations

0 0 .
J 2

Following Diederich-Fornaess-Wiegerinck (5], for z,( € €, we let
2,¢) =Y (O - %)
j=1
+ vZ ("™ = &M 7NG = )" + (G = )™,

where v > 0 is a sufficiently small constant. Then we have the following
lemma.

LEMMA 2.1. (i) F(z,() is holomorphic in z.
(i) F(2,¢) = 0ifand only if z = . Moreover d¢F(z,()|¢c=. = 8p(¢) # 0.
(1i1) For ~y chosen small enough, there exists ¢ > 0 such that

2Re F(z,¢) 2 p(¢) - p<z>+c2 TR TG — 2P G — 2 2]

PROOF. See [5] or [9]. O

We decompose F(z,¢) = 3-i_, Pj(2,¢)(2; — {;), where

Py(2,0) = =p; (O + [0 = €7 )z = ) + (55 — )]

and set

5 D P 0

Jj=1

5(2,¢) = F(z,0) = p(¢), Qz,¢) =
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Then the Berndtsson and Andersson kernel is

n—1 i 3 j 3 j
r PO b A (BQY A (B
K60 = 3o g el — gt

=0

where r > 0 is suitably large, ¢, ;’s are some constants and b = Z;L_:l(zj'

—(;)d¢;. Since due to Lemma 2.1 (iii) Re S(z,{) > 0 for 2,{ € Q we
can define an integral operator

T"f(2) = K'(z, Q)N f(Q), z€

cen
Since the kernel K" (z,() vanishes for { € bQ2 the integral operators

T" are indeed a solution operator in Q (see [2] for details). From the
definition of Q = Q(z,() we can easily obtain

n 7 a n 7—1 n
(6QY = - (Z mdg) SRy (Z éPidcz-) A (Z Pidci).
P \io P’ i=1 i=1

After canceling |p(¢)|’ in fraction we can write

n—1 _ n—1 _
K7 (2,0) = [p(O)" Y K5 (2,0) + p(Q)I"™ D_ K (2,¢) A (<),

§=0 j=1

where K 7(2,¢) and K7 (2,() satisfy the following estimates:

1
SGOFIC— 2P T
|(Z?=1 5<Pi(z, C)dCZ)Jl

|K5(2,0)] S

21 |Kj(z0|S SG O g 1Sisn-L
, Sy OcPi(z, Qde)" | .
IKJ(Z7C), 5 Ig(zaC;lTij|C~zl2n)2j—l’ 1<7j<n-1

Fix (o € Q sufficiently close to the boundary of 2 and choose a
small ball B(¢p,A) with radius A > 0. Further we may assume that
dp(¢p) = (1,0,---,0) and |pi(¢)| = 1/2 on B({p, ). To improve the
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estimates |K§(z,§)|, 1<j<n-1forz(e€ B((,A) NQ we introduce
the following frame of (0, 1)-vector fields
1 .
VO 0 mo L,
pi 0G oG p10G
with the dual co-frame
Wi =—\/——15p, wi:d@, i=2,--- , 1.

Then for g € CY(B(¢y, \) N Q) we have Og = Z?Zl(ng)wj. We define

22 Y

n

(2.3) 8'g =Y (Y;9)w;-

j=2
Since Op A 8g = Op A O'g the third inequality in (2.1) can be improved
as the following form
Ki(e,0) < (E R, 0d6) )

IS (2, QI ¢ = 2P
for 1 <j<n-—1andz (€ B({,\) NN.

3. Reduction of integral kernels

In this section we will reduce the integral of |K"(z,()| over Q to the
integration over small parts of C2 or R?. To do this we need the following
local coordinate systems.

LEMMA 3.1. (i) There exist a positive constant \ and an open neigh-
borhood U of b§2 such that for every z € U one can find a smooth change
of coordinates t = t(z,{) = (t1,- - ,ton) in the ball B(z, \) satisfying

t1(2,¢) = p(C),  t2(2,¢) =Im F(z,(),
t2j—1(ZaC)+ V_1t2j<za<>=(<j_zj)7 .7:27 , 13,
(3.1)
IC—Z|z|t1_P(z)‘+|t2|+|t/|7 t,:(t3a"' 7t2n)7 fOI'CGB(Z,)\)
|t(2,¢)| <1 and |[detJr(t(z,-))| =1 for (€ B(z,A).
(ii) For every ¢ € QN U there is a coordinate system u = (u1,- -, Uzn)
for z € B((, \), where X is independent of { satisfying

ui(2) = p(2), w2 =ImF(z,() andu(()=(p((),0,--,0),
which has properties analogous to those of the coordinate system t on
B(z,\).
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PROOF. By Lemma 2.1 (ii) and the compactness of b) everything is
obvious. For details see Lemma V.3.4 of Range’s book [8]. O

The following lemma is the key step for the proof of Main Theorem.

LEMMA 3.2. Forall z € UN§, 1 <j<n-—1ands > —1 to be
decided later there exists a constant C independent of z satisfying the
following estimates:

(i) / (1| B3 (2, 0| aV ()

QNB(z,\)

[61]° dt1dts
= C// (1] + [t2] + 1p()D)7 (1t = |p()] + [t2])

[(t1,t2)]<1

(i) / (O |K (2,0 dV ()

QNB(z,\)

C // |t1!5 dtldtde(w)
(Ita] + [t2| + Jw™ + |p(2)])"+Hw|

[(t1,t2)[<1
jw|<1
w=(t3,t4)

(i) / Q| B (2, 0)| dV ()
QNB(z,\)

|t1|s dtldthV(lU)
=C // (T + ] + [wl™ + ()] 1 ]

[(t1,t2)|<1
|w|<1
w=(t3,t4)

An analog statement to the integration of lp()]slf(]’” (,¢)| and |p(-)|*
]KJT(, ¢)| over QN B(¢, ) is also true for every ¢ € UNQ.

REMARK. In section 4 we will show that the right hand sides of
(1)—(iii) are bounded for each z € U N Q) and suitably chosen s.

PRrOOF. Fix z € U N . From the definition of S(z,({) and Lemma
2.1 (iii) it is easy to see that for every { €

1S(2, O Rm F(z, () + |p(2)] + [p({)]

(3.2) + Z [(§J2m—2 2VJ—2)|C3 _ ZJ‘Z + |<~] o ZJ|2V]]
=1
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Part (i). By the inequality (2.1), change of coordinates introduced in
Lemma 3.1 and Fubini’s theorem we easily see that

[ borIRs e 0 avee)
QNB(z,\)

</ lt1]° dt
~ Ji<r (il + 2l + 1)) (8 ~ |p(2)]] + [t2] + [¢])>

</ It1|° dtdts
™ it tayi<r (Ea] + [t2] + |p(2)])"

o “
<1 (tr = [p(2)]] + [t2f + |t/[)2 1

Introducing polar coordinates in ¢’ € R?"~2 with » = |¢/| and integrating
with respect to 7 we obtain the inequality (i).

Part (ii). First for j = 1 we note that the following inequalities are
satisfied:
1Sz, O 2 [ta] + [t2] + [p(2) + [w[™, ¢ — 2] 2 Jw]+ [t"],

where w = (ts,t4) and t" = (ts, - ,t2,) € R¥*™4. As Part (i) if we
change coordinates of Lemma 3.1 (i) and introduce polar coordinates in
t" with r = |t”| then the inequality (ii) is also true. Now we may assume
that 2 < 7 < n—1. To reduce the integral we have to precisely estimate

I(ZZ=1 55Pk(z, C)d(k)j_1|. From the definition of Py(z,() and (2.2) we
immediately obtain that

[ViPe(z, Q)] < Gur Il + 242

+1¢e — zxl (o ()€ 72 + U(Vk)ink|2'/k_3)}
fori,k=2,--- ,nand
[YiPi(z, Q)| S &~ +ms ™", i=2,-- ,n,
where o(£) = 0if £ = 1 and o(¢) = 1 for £ = 2,3,.... Calculat-

ing the (j — 1)-th exterior product, from (2.3), we see that the term

(X ey OLPi(z, C)d(k)J_ll is bounded by some constant times a sum of
the following form
-1
Plhy, -+ ykjm1) = [ 1o % 72 4 i, 5o~

a=1

(G = 2o (0 (€[5 2  0 (v, ) e, [27)]



270 Heungju Ahn

where 2 < k; < -+ < k;j_1 < n. Rearranging the indices, we can always
assume that ky = n—353+2,kp =n—35+3,---,kj—1 = n. For the
simplification of notation we denote P(n —j +2,--- ,n) by Py. Then if
we express Py in £ coordinates we have

n

= ]] [|t2k_1 + 222 4 g + yp |
k=n—j5+2

+ [tak—1 + V—Ltak| (o (1r) tap-1 + zk|** 7% + o (k) |tar + yklzy’“"?’)]'

Here we may assume that the dimension of ambient space is greater than
2, since if n = 2, the inequality (ii) is obvious. We claim that

1p(O))°Po
(3:3) /QHB(Z,A) 150z, O 91 — 251

av(¢)

t1|° dtydts
< dv{(w / | .
/ e O iair TETH Tl o+ (D]
’w:(tg,t4)
By (3.1) and inequality (3.2) we have |¢ — z| 2 |w| + |¢] and
(3.4)
15(2, ¢)|
2l + Izl + ol + () + 3 [(Itanos + 22

k=n—j42

+ ltor + yul?*72) (ltow=11 + 1t2l?) + (V[t2e—1]? + |t2k|2)yk],

where we write £ = 0 if n = 3 or j = n — 1 and otherwise { =
(ts, - ,ton—2j42). For the simplification of integrals we introduce an-
other notation £ = (t2n—2j+43, - »tan). Then by the above inequalities
and the Fubini theorem we see that

[ POFR ey
Q

AB(= 18(2, QI+ — 2|2n—2-1
S / / [¢1]° dtidtdV (w)
lw|<1 J|(t1,t2)I<1

y / Pydt
i<t ([t + ftol + Jw|™ + |p(2)] + - - )+

X / dt
i<t (Jw] + |E)2n—2-1’
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where (---) in df integral is the summation term from the right hand
side of (3.4). It is clear that

dt 1
(3.5 / - — S
) i<t (ol + )7 21 ~ ]

if we change polar coordinates in {. Note that if n =3 or j = n — 1,
ie., t =0, then (3.5) is autonomous. To obtain the inequality (3.3), by
(3.5), it suffices to show that

/ Py di
i<t ([Ea] + lta] + |w|™ + |p(2)] + - - - )9
< L .

(It1] + ft2| + |w|™ + |p(2)[)m+1

(3.6)

To do this we need the following lemma.

LEMMA 3.3. For ¢ > 1,k > 1,I = {(z,y) : |z|> + |y|* < 1} and
A positive, close to 0 there exists a constant C satisfying the following
estimates

Q) / |z + s|* dzdy < C
1 (At |z +slf(z? +y2))e — AV
(i) / |z + s|*~ x| dzdy < C
LA Jat sF G g2 = AT
(i) / |z + s|*~1|y| dzdy < C ,
1 (A+ o+ sk (22 + y2) + (Va2 + y2)k+2)? = Ae7!
. |€]F dady C
() s £ < e
v) / €157 || dady < c ,
ARG o)+ (T T ) A

independent of s € [—1,1] and £ € C with [§] < 1.

PRrROOF OF LEMMA 3.3. See Lemma (3.13) of [9]. a

We integrate the left hand side of (3.6) with respect to dta,_2j3,
dtsn_2j14, respectively using Lemma 3.3 and deleting (]tgn_2j+3]2 +

Vn—j+42

toan—2j44l%) if convenient. It is easy to see that we have almost
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the same integral except that the exponent (r + j) in the denominator
becomes (r + j — 1) and to, 2543, t2n—2;+4 vanishes. We repeat this for
ton—2j+5, ** ,ton. After 2(j — 1)-times integration, we have the inequal-
ity (3.6).

Part (iii). By the straightforward computation we have

(Z 3 Pe(z, odck)j

k=1

/g
< Z H [lf@@ Izueﬁ—Z + |7’25|2V’C£ s + |<€g - zfﬁl
p=1
-3 —
% (0 (e )l€ea 5= + 0 (veg) ey |5 ™) |
¢t j—1
ST [ 25072 %72 4 i, = 2,
a=1

X (0 (k) €k |25 73 + 0 (Ui, ) i |27 —3)} ,

where Z/ is summed over all j-tuples, 1 < ¢; < --- < {; <nand (j—1)-
tuples 2 < k; < -+ < kj_1 < n, respectively. Thus the inequality (iii)
follows from the Part (ii). The proof of an analog statement is not
exactly the same as the one of (i)—(iii). But by virtue of (ii) of Lemma
3.1 and (iv), (v) of Lemma 3.3 they can be proved in the same way and
the proof is even much easier. So we omit the proof. O

4. Estimates of integral kernels

We will prove two propositions which are essential part of this paper.

PROPOSITION 4.1. Let r be a suitably large number depending on
given «, €.
(i) For € > 0 there exists a constant C. > 0 such that

/Q (O Y4 By (2,0 dV(Q) < Culpl(2)| ™ for z € Q.

(ii) For a > 0 and a—e > —1 there exists a constant C,, . such that

| /Q (IR (2, ) AV (2) < Caelo(Q==+ for ¢ € Q.
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PROOF. Part (i). Since the only singularity of the integral occurs for
¢ = z, it is clear that if |( — z| > A the integral is bounded and so the

inequality (i) holds. If z € Q\ U, where U is an open set appeared in

Lemma 3.1, then |S(2,{)| > ¢ > 0 for every { € Q and so IKO z,¢)|
is mtegrable Again in this case the inequality (i) holds. Therefore we
may assume z € QN U and it suffices to show that

L= [ Or R, 2] avie) $ o)
QNB(z,\)

It follows from Lemma 3.2 (i) that

Il < /1 /1 ’tll'r—l—e dtldtQ
~ oS (] 2] £ 1e(2) )7 ([ = le(2)]] + [E2])

dtidto
s /_1 /_1 (Iea] + [to] + () +e(ts — 1p(2)|] + [E2])

If we make the change of variables t; = |p(2)|t] and t2 = |p(2)|t; and
omit the primes, this becomes

z)|_€ /oo /oo dt1dty
t1 +ts + 1)1+5((t1 - 1) + tg)
—e dt1dty
2l / / (t1 +t2 +2)1 (g + o)

s 0 dé
< —€ -
Sle()™F, ife>0.

Part (ii). As Part (i) it is enough to show that for ( € QN U fixed
I =/ 3 |P(C)|°‘—E‘f{'g(§, 2)| dV(2) < |p(¢)|os T,
QOB(C,A)

From the coordinate system u introduced in (ii) of Lemma 3.1 and an
analog statement of Lemma 3.2 it follows that

|U1|a € dulduQ
bs /_1 /_1 (lua] + [uz| + oD (lur = 1o(OI + |uz])
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If we make the change of variables u; = |p(2)|u} and us = |p(2)|u} and
omit the primes, we have

e R e I,ul'a—e duydus
12 5 P C) a—€ r+1/ / .
o) oo Tl + Tual + D7 (s = 1+ ]

If « — ¢ >0, then

e duydus
L 5 1)) +1/ /. o (ol + o + D=y — 1+ Jea])

duydu
< a—e—r+1 1642
S (O /0 /o (ur +ug + 2)r—ote(uy + uy)
oo 6 dé
a—e—r+1
SO [ s

SIpOIP==™ ifr—ade> 1.

If -1 <a—¢e<0, then for 0 <n <1 we have

_ d’uld’U,z
Is= / / fur[F=e(fua | + [uz] + 1) (Jur ~ 1] + Jus])

/ / dulduQ
lule=|uy — 17 |ug [P =7 (fuy | + fua| + 1)"

/ du1 / du2
™ ool [T g = 1 (fus| + 1)F o ot (Jug) +1)5

But since 0 <77 <1 and 0 <z — a < 1 it is easy to see that

/oo du1
—oo JurFm¥uy — 1]7(Jug| + 1) %

< /oo dU1 /oo dU1
o ul Hur+1)3  Jo uf(u +2)3
Therefore I3 is bounded even though —1 < @ —¢ < 0. Hence I, <
Q= ifa—e > 1. O

PROPOSITION 4.2. Let 1 < j < n—1 and r be a suitably large
number depending on given «, €.

(i) For € > 0 there exists a constant C, > 0 such that

/Q ("7 ¢ | KT (2,¢)] dV(¢) < Celp(2)|~¢  for 2 € Q.
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(ii) For o > 0 and a —e > —1 there exists a constant C,, ¢ such that
1RG0 aV() < CoclpfO 7+ % for ¢ 9

(iii) In the above integral if we replace |K;(z, §)| by |K iz, C)‘ then
we can also obtain the same results.

PROOF. Part (i). Fix z € QN U. As the proof of (i) of Proposition
4.1 we have

L= /Q o O ) av(©

1 1 r—1—--L1_
tll m ¢ dtldt2
/|w|<1 ) _1Jo1 (] F 2] + w4+ |p(2)]) Hw)

w=(t3,ta)

If we make the change of variables w = |p(z)|=w',t; = |p(2)|t; and
to = |p(2)|ty and omit the primes, this becomes

I, < ’p(z)"f/ /oo/oo t;_b%_g dt1dt2dV (w)
L werz Jo Jo (t+ bz 4 [w|™ + [p(2)])"+ w]

If we choose r so that r — 1 —1/m — ¢ > 0, then

nlE [ [ dtydtadV (u)
~ werz Jo Jo o (t1 +ta 4 [w|™ + |p(2) )2 e |w]

<o) / VW) o) ife >0,
wer? |w|(Jw|™ 4+ 1)m+e

Part (ii). As the proof of (ii) of Proposition 4.1, by the analog statement
of Lemma 3.2, we have

I = / 1) K (2, 0)dV (2)
QNB(C,N)

</ /1 /1 |12~ duy dusdV (w)
A S A e A R T e N T

w=(uz,u4)
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If we make the change of variables w = |p(¢)|Y/™

uz = |p(¢)|ub and omit the primes, then we have

—em 1 R 77° durdugdV (w)
I, < a—e 7‘+1+m/ / / Uy 1 .
23 1el0)] vew o Jo Turtw +Twl™ 3 D)+

' up = (Ot and

If « —e >0, then

I, :/ /°° /°° ul ¢ duyduzdV (w)

werz Jo Jo (w1 +ug + |w|™ 4+ 1) w]
< / dV (w)

™ Jwere (lw™+ 1)r=te—ty)

* 5ds .
: S if 7 — - —>1
~ /0\ (5m+1)’r—a+€_15 ~ 1 1f7‘ a+e =~ >

If -1 < o — e <0 and r is sufficiently large, then we also obtain that

oo du duadV (w)
IS = E—OQ 1 S l‘
wer2 Jo  Jo  ui *(u1 4+ ug + jw|™ + 1)+ w)

5. Proof of Main Theorem

For z € () we define operators

Frf(z) = /< WOFR (. OAFO, 05j<n-1,

T f(2) = /< POP K O AGO A Q) 1S5 Sn-1

Then a solution u of Ju = f becomes

n—1

u(z) = (T7)(2) = X (@ HE+ Y (T )

—0

.

To prove Main Theorem we divide estimates into two parts.
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5.1. The case 1l < o < o0. It is enough to show that

n—1 n-—1
(5.1) D N fllpia + DT fllpa < Coallfllpan;
=0 j=1

when p = 1 and p = oo. Then by the Marcinkiewicz Interpolation
Theorem (see Theorem 6.28 of [7]) it is easy to see that the inequality
(5.1) holds for 1 < p < co. We first consider 7] f, 0 < j <n—1. Recall

that |f(Q)la = 10(O)I1F (O + ()7 [£(¢)] for ¢ € Q. For the case p =1

we have

| T @lipte) e v
s [ 5@l / 1p(2)|* | K (2, ).

ceN z€QN

By Proposition 4.1 (ii) and Proposition 4.2 (iii) we have

/Q 1p(2)2 | Re (2,0 dV(2) < o),

[ @I R 0] V) S QT 1< <n-t,
respectively. Therefore for any 0 < j < n — 1, we have

[T sl v s [ 1FOlalp@I av(C)
Q Q

Here we use the fact that |p(z)] < 1 for every z € Q. For the case p = c0
it follows from Proposition 4.1 (i) and Proposition 4.2 (iii) that

|77 £ (2)|lo(z)] >~
S sup [1£Olalp(O1 lp(2)* 7 / PO | K} (2,0)]

cen
< sup [[f(Qlalo(Q)*7Y], ifa>1.
(e
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Next we consider T f, 1 < j<n-1 Ifp=1, then we obtain

/QITff(Z)Hp(Z)I()“1 dv ()
s [ 18O sNOr [ 1K 2, 0)

CeQ o
S [ @l =Hlp T
¢eq
< [ Ol

¢eQ

by Proposition 4.2 (ii). Here in using Proposition 4.2 (ii) we put € =
1> 0. If p = oo, similarly by Proposition 4.2 (i), we see that

|T7 £ (2)|Ip(2)1> 7
< sup [FQlaloOI a1 [ 10 =852, 0)

e
< sup [|If(Qlale(O*7Y], ifa>1.
Cer

5.2. The case 0 < o < 1. We can not use the interpolation argument,
since in this case one can not prove the estimate (5.1) for p = oo. For
p = 1 the estimate (5.1) is proved as the case 5.1, since the proof does not
depend on a. Now let 1 < p < oo and g satisfy the equality 1/¢+1/p = 1.
Then by Hoélder’s inequality and Proposition 4.1 (i) and 4.2 (iii) we have
for sufficiently smalle >0 and 0 <3< n—-1

1@l < [ 1R fla

- / (o BT F o= (1ol" BT 7 o fle

1 1
< ( / |p|“1—W1f<;‘|) ( / |pr—1+€p!f<;||f|5>
CeN e

i@ ([ rRsse)
Cen
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Thus it follows from Proposition 4.1 (ii) and 4.2 (iii) that
(5.2)

LTzt ave s [ aeolg) [ g

4

< P a—1
< /;  \la

if we choose &€ > 0 so small that « — 1 — &p > —1. Again by Holder’s
inequality and Proposition 4.2 (i) we have for sufficiently small ¢ > 0
and1 <j<n-1

IT7f(2)] < / o713 | KT |pl % 13p A f] = / Pl K1

S ([ mtoeil) (b))
CEN e

1

- r—1—1 ” P

< Jo() ( [ 1o m+€p|Kij|g) .
CeN

-

Thus it follows from Proposition 4.2 (ii) that
LT s r avee)

(5.3) < / Nt /< ey

< / B,
e

if we choose € > 0 so small that o — 1 — e¢p > —1. Combining (5.2) and
(5.3) we see that the inequality (5.1) holdsfor 1 < p < oo and 0 < o < 1.
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