DOI QR코드

DOI QR Code

ON PROJECTIVE BCI-ALGEBRAS

  • Ahn, Sun-Shin (Department of Mathematics Education Dongguk University) ;
  • Bang, Keumseong (Department of Mathematics The Catholic University of Korea)
  • Published : 2003.04.01

Abstract

In this paper, we obtain Hon(P,- ) is an exact functor if P is a p-projective BCI-algebra.

Keywords

References

  1. Kyungpook Math. J. v.40 no.2 A horn functor in BCK/BCT-algebras S.S.Ann;H.S.Kim
  2. Kobe J. Math. v.6 Some universal properties of BCT-algebras Z.M.Chen;H.X.Wang
  3. Math. Japonica v.33 A note on BCI-algebras E.Y.Deeba;S.K.Goel
  4. Math. Japanica v.38 p-Projective BCI-algebras C.S.Hoo;Y.B.Jun
  5. Math. Japonica v.32 A note on associative BCI-algebras C.S.Hoo;P.V.R.Murty
  6. Kyungpook Math. J. v.35 no.1 On Hom(-,-) as BCK/BCI-algebras Y.B.Jun;J.Meng
  7. Commun. Korean Math. Soc. v.8 A note on Hom(-,-) as BCT-algebras Y.B.Jun;J.Meng
  8. Math. Jaopnica v.37 Some results on p-semisimple BCI-algebras Y.Liu
  9. Selected Papers on BCK and BCI-algebras On projective and p-pojective BCI-algebras Y.Liu
  10. BCK-algebras J.Meng;Y.B.Jun
  11. A first course of hamological algebra D.G.Northcott

Cited by

  1. ON INJECTIVE BCI-ALGEBRAS vol.29, pp.2, 2007, https://doi.org/10.5831/HMJ.2007.29.2.289