ON PROJECTIVE BCI-ALGEBRAS

SUN SHIN AHN AND KEUMSEONG BANG

ABSTRACT. In this paper, we obtain $Hom(P, _)$ is an exact functor if P is a p-projective BCI-algebra.

1. Introduction

C. S. Hoo and P. V. R. Murty ([5]) and E. Y. Deeba and S. K. Goal ([3]) independently showed that Hom(X) may not, in general, be a BCIalgebra for an arbitrary BCI-algebra X. In view of this result we can also see that Hom(X,Y), the set of all homomorphisms of a BCI-algebra X into an arbitrary BCI-algebra Y may not be a BCI-algebra in general. However, E. Y. Deeba and S. K. Goal ([3]) proved that if X is a BCIalgebra and Y is a BCK-algebra, then Hom(X,Y) is a BCK-algebra and hence a BCI-algebra. Y. Liu ([8]) showed that if X is a BCI-algebra and Y is a p-semisimple BCI-algebra then Hom(X,Y) is a p-semisimple BCI-algebra. In [6] and [7], Y. B. Jun et al. investigated some properties of Hom(-, -) as BCK/BCI-algebras. The present authors ([1]) defined a hom functor $Hom(_,_)$ in BCK/BCI-algebras and discussed the exactness of $Hom(_,_)$ in BCK/BCI-algebras, and obtained some properties of $Hom(_,_)$. In this paper, we discuss the projectivity in this sense of p-semisimple BCI-algebras and show $Hom(P, _)$ is an exact functor if P is a p-projective BCI-algebra.

Recall that a BCI-algebra is a non-empty set X with a binary operation "*" and a constant 0 satisfying the axioms:

- $(1) \{(x*y)*(x*z)\}*(z*y) = 0,$
- (2) $\{x * (x * y)\} * y = 0$,

Received June 10, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 06F35.

Key words and phrases: BCK/BCI-algebra, regular, exact, hom(exact) functor, (p-)projective BCI-algebra.

- (3) x * x = 0,
- (4) x * y = 0 and y * x = 0 imply that x = y

for any $x,y,z\in X$. Furthermore, if it satisfies (5) 0*x=0 for any $x\in X$, then the algebra is called a BCK-algebra. A partial ordering " \leq " on X can be defined by $x\leq y$ if and only if x*y=0. Let X_+ be the BCK-part of a BCI-algebra, i.e., X_+ is the set of all $x\in X$ such that $x\geq 0$. If $X_+=\{0\}$, then X is called a p-semisimple BCI-algebra. A mapping $f:X\to Y$ from BCK/BCI-algebra X into a BCK/BCI-algebra Y is called a BCK/BCI-homomorphism if f(x*y)=f(x)*f(y) for all $x,y\in X$. Define the zero homomorphism 0 as 0(x)=0 for all $x\in X$. Denote by Hom(X,Y) the set of all homomorphisms from a BCK/BCI-algebra X into a BCK/BCI-algebra Y.

DEFINITION 1.1. Let X and Y be BCI-algebras. A BCI-homomorphism $f: X \to Y$ is said to be regular if Imf is an ideal of Y.

We call an ideal A of X regular in case A is a subalgebra of X. In the literature, Imf need not be an ideal of Y.

DEFINITION 1.2. Let $f: A \to B$ and $g: B \to C$ be BCI-homomorphisms. The sequence $A \to B \to C$ is said to be exact at B if Kerg = Imf. A sequence $A_0 \to A_1 \to \cdots \to A_n \to A_{n+1}$ is said to be exact if it is exact at A_1, \cdots, A_n .

EXAMPLE 1.3 ([2]). 1. $0 \to A \xrightarrow{f} B$ is exact (at A) if and only if f is injective.

- 2. $A \xrightarrow{f} B \to 0$ is exact (at B) if and only if f is surjective.
- 3. The sequence $0 \to A' \xrightarrow{\mu} A \xrightarrow{\varepsilon} A'' \to 0$ is exact (at A', A, A'') if and only if μ induces an isomorphism $A' \xrightarrow{\cong} \mu A'$ and ε induces an isomorphism $A/Ker\varepsilon = A/\mu A' \xrightarrow{\cong} A''$. Essentially A' is then a regular ideal of A and A'' the corresponding quotient algebra, such a sequence is called a *short exact* sequence.

2. Hom functors

The present authors ([1]) defined a hom functor $Hom(_,_)$ in BCK/BCI-algebras and discussed the exactness of $Hom(_,_)$ in BCK/BCI-algebras. Let $\mathbb C$ and $\mathbb D$ be any categories of BCK/BCI-algebras. A functor from $\mathbb C$ to $\mathbb D$ is a triple $(\mathbb C, F, \mathbb D)$, where F is a function from the

class of BCK/BCI-homomorphisms of $\mathbb C$ to the class of BCK/BCI-homomorphisms of $\mathbb D$ (i.e., $F:Hom(\mathbb C)\to Hom(\mathbb D)$) satisfying the following conditions:

- (i) F preserves identities: if e is a \mathbb{C} -identity, then F(e) is a \mathbb{D} -identity (ii) F preserves composition: i.e., $F(f \circ g) = F(f) \circ F(g)$; i.e., whenever dom(f) = cod(g), then dom(F(f)) = cod(F(g)) and the above equality holds.
- Let $u:A'\to A$ and $v:B\to B'$ be BCI-homomorphisms, where A,B and B' are BCK-algebras. We define a mapping

$$Hom(u,v): Hom(A,B) \rightarrow Hom(A',B')$$

by requiring that $f \in Hom(A, B)$ is to be mapped into $vfu \in Hom(A', B')$. Clearly, Hom(u, v) is a BCI-homomorphism and if u, v are identity maps, then Hom(u, v) is also an identity map.

Again if $u':A''\to A'$ and $v':B'\to B''$ are BCI-homomorphisms, where A',B'' are BCK-algebras, then

$$Hom(uu', v'v) = Hom(u', v')Hom(u, v).$$

In fact, $Hom(_,_)$ is a functor. This functor is called a *hom functor*.

Note that $Hom(u, B) = Hom(u, 1_B)$ and $Hom(A, v) = Hom(1_A, v)$. Let X and Y be BCI-algebras and let

$$X \oplus Y = \{(x,y) \mid x \in X, y \in Y \}.$$

We define the operation * on $X \oplus Y$ by

$$(x,y)*(x',y') = (x*x',y*y')$$

for all $(x,y), (x',y') \in X \oplus Y$. Then $(X \oplus Y, *, (0,0))$ is a BCI-algebra, which is called the *direct sum* of X and Y (see [3]). If $u_1, u_2 : A' \to A$ and $v_1, v_2 : B \to B'$ are BCI-homomorphisms, where A, B' are BCK-algebras, then the mappings $u_1 \oplus u_2 : A' \oplus A' \to A \oplus A$ defined by $u_1 \oplus u_2(x_1, x_2) = (u_1(x_1), u_2(x_2))$ for any $(x_1, x_2) \in A' \oplus A'$, and $v_1 \oplus v_2 : B \oplus B \to B' \oplus B'$ defined by $v_1 \oplus v_2(x_1, x_2) = (v_1(x_1), v_2(x_2))$ for any $(x_1, x_2) \in B \oplus B$, are BCI-homomorphisms.

PROPOSITION 2.1 ([1]). If $u_1, u_2 : A' \to A$ and $v_1, v_2 : B \to B'$ are BCI-homomorphisms, where A, B and B' are BCK-algebras, then

$$Hom(u_1 \oplus u_2, B) = Hom(u_1, B) \oplus Hom(u_2, B)$$

and

$$Hom(A, v_1 \oplus v_2) = Hom(A, v_1) \oplus Hom(A, v_2)$$

i.e., a hom functor is additive.

LEMMA 2.2. Let $f: X \to Y$ be a homomorphism, where X is a BCI-algebra and Y is a p-semisimple BCI-algebra. Then Imf is an ideal of Y.

PROOF. For any $y_1, y_2 \in Y$, let $y_1 * y_2 \in Imf$ and $y_2 \in Imf$. Then there exist $x_1, x_2 \in X$ such that $f(x_1) = y_1 * y_2$ and $f(x_2) = y_2$. Hence $f(x_1) = y_1 * y_2 = y_1 * f(x_2)$. Thus we have

$$f(x_1) * (0 * f(x_2)) = (y_1 * f(x_2)) * (0 * (f(x_2)))$$

$$f(x_1) * (f(0) * f(x_2)) = (y_1 * 0) * (f(x_2) * f(x_2))$$

$$f(x_1) * (f(0 * x_2)) = (y_1 * 0) * 0$$

$$f(x_1 * (0 * x_2)) = y_1.$$

Therefore there is an element $x_1*(0*x_2) \in X$ such that $f(x_1*(0*x_2)) = y_1$, i.e., $y_1 \in Imf$.

THEOREM 2.3 ([1]). If σ, π are regular BCI-homomorphisms in the exact sequence of BCI-algebras:

$$M' \xrightarrow{\sigma} M \xrightarrow{\pi} M'' \rightarrow 0$$

then, for any BCK-algebra N, the sequence

$$0 \to Hom(M'',N) \xrightarrow{Hom(\pi,N)} Hom(M,N) \xrightarrow{Hom(\sigma,N)} Hom(M',N)$$

 $is\ exact.$

Using Lemma 2.2 we know that if $f: X \to Y$ is a BCI-homomorphi-sm from a BCI-algebra X into a p-semisimple BCI-algebra Y, then it is a regular BCI-homomorphism.

Y. Liu ([8]) showed that if X is a BCI-algebra and Y is a p-semisimple BCI-algebra then Hom(X,Y) is a p-semisimple BCI-algebra. With this concept we generalize Theorem 2.3 as follows:

THEOREM 2.3'. If $M' \xrightarrow{\sigma} M \xrightarrow{\pi} M'' \to 0$ is an exact sequence of BCI-algebras, where M and M" are p-semisimple BCI-algebras, then, for any p-semisimple BCI-algebra N, the sequence

$$0 \to Hom(M'',N) \xrightarrow{Hom(\pi,N)} Hom(M,N) \xrightarrow{Hom(\sigma,N)} Hom(M',N)$$

is exact.

THEOREM 2.4 ([1]). If ϕ, ψ are regular BCI-homomorphisms in the exact sequence of p-semisimple BCI-algebras,

$$0 \to B' \xrightarrow{\phi} B \xrightarrow{\psi} B''$$

then for all BCI-algebra A, the sequence

$$0 \to Hom(A,B') \xrightarrow{Hom(A,\phi)} Hom(A,B) \xrightarrow{Hom(A,\psi)} Hom(A,B'')$$

is exact.

As we generalized Theorem 2.3, we generalize Theorem 2.4 as follows:

THEOREM 2.4'. If $0 \to B' \xrightarrow{\phi} B \xrightarrow{\psi} B''$ is an exact sequence of p-semisimple BCI-algebras, then for all BCI-algebra A, the sequence

$$0 \to Hom(A,B') \xrightarrow{Hom(A,\phi)} Hom(A,B) \xrightarrow{Hom(A,\psi)} Hom(A,B'')$$

is exact.

3. Characterization of projective BCI-algebras

In this section, we show that Hom(P,) is an exact functor if P is a p-projective BCI-algebra. Recall that a BCI-algebra P is called projective if for every BCI-homomorphism $f:P\to Y$ and every BCI-epimorphism $g:X\to Y$ there exists a BCI-homomorphism $h:P\to X$ satisfying gh=f. A BCI-algebra P is said to be p-projective if for every BCI-homomorphism $f:P\to Y$ and every BCI-epimorphism $g:X\to Y$ of p-semisimple BCI-algebras there exists a BCI-homomorphism $h:P\to X$ satisfying gh=f. Clearly every projective BCI-algebra is p-projective.

LEMMA 3.1 ([9]). Let

be a commutative diagram of BCI-algebras and BCI-homomorphisms such that each row is a short exact sequence and B' is p-semisimple. Then

- (i) α, γ are monomorphisms $\Longrightarrow \beta$ is a monomorphism;
- (ii) α, γ are epimorphisms $\Longrightarrow \beta$ is an epimorphism;
- (iii) α, γ are isomorphisms $\Longrightarrow \beta$ is an isomorphism.

Let $X \oplus Y := \{(x,y) \mid x \in X, y \in Y\}$ be the direct sum of BCI-algebras X and Y. Then the mappings $i_X : X \to X \oplus Y$ and $i_Y : Y \to X \oplus Y$ given by $i_X(x) = (x,0)$ and $i_Y(y) = (0,y)$ are clearly BCI-monomorphisms.

THEOREM 3.2 ([9]). Let $0 \to A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \to 0$ be a short exact sequence of p-semisimple BCI-algebras. Then the following conditions are equivalent:

- (i) There is a BCI-homomorphism $h: A_2 \to B$ with $gh = 1_{A_2}$;
- (ii) There is a BCI-homomorphism $k: B \to A_1$ with $kf = 1_{A_1}$;
- (iii) The given sequence is isomorphic (with identity maps on A_1 and A_2) to the direct sum short exact sequence

$$0 \to A_1 \xrightarrow{i_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \to 0;$$

in particular $B \cong A_1 \oplus A_2$.

A short exact sequence $0 \to A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \to 0$ satisfies one of the equivalent conditions (i), (ii), and (iii) of Theorem 3.2 is called a *split* (exact sequence).

THEOREM 3.3. Let $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ be a short exact sequence of p-semisimple BCI-algebras. Then the followings are equivalent on BCI-algebras:

(i)
$$0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$$
 is split;

- (ii) $0 \to Hom(D, A) \xrightarrow{Hom(D, \varphi)} Hom(D, B) \xrightarrow{Hom(D, \psi)} Hom(D, C) \to 0$ is a split exact sequence of p-semisimple BCI-algebras;
- (iii) $0 \to Hom(C,D) \xrightarrow{Hom(\psi,D)} Hom(B,D) \xrightarrow{Hom(\varphi,D)} Hom(A,D) \to 0$ is a split exact sequence of BCI-algebras, where D is a p-semisimple BCI-algebra.
- PROOF. (i) \Rightarrow (iii): Assume that the sequence is split. Then, by Theorem 3.2, there exists a BCI-homomorphisms $\alpha: B \to A$ such that $\alpha \varphi = 1_A$. It induces a BCI-homomorphism $Hom(\alpha,D): Hom(A,D) \to Hom(B,D)$. We claim that $Hom(\varphi,D)Hom(\alpha,D)=1_{Hom(A,D)}$. In fact, $Hom(\varphi,D)Hom(\alpha,D)=Hom(\varphi,1_D)$ $Hom(\alpha,1_D)=Hom(\alpha\varphi,1_D)=Hom(1_A,1_D)=1_{Hom(A,D)}$. By applying Theorem 2.3' and Theorem 3.2 the Hom(-,-) sequence is split.
- (iii) \Rightarrow (i): Assume that the $Hom(_{-,-})$ sequence is split. Then, by Theorem 3.2, there exists a BCI-homomorphism $Hom(\alpha,D): Hom(A,D) \to Hom(B,D)$ such that $Hom(\varphi,D): Hom(\alpha,D)=1_{Hom(A,D)}$, i.e., $\alpha\varphi=1_A$. It follows from Theorem 3.2 that the exact sequence $0\to A\xrightarrow{\varphi} B\xrightarrow{\psi} C\to 0$ is split.
- (i) \Leftrightarrow (ii): This can be proved similarly by using Theorem 3.2 and Theorem 2.4', and we omit the proof.

Theorem 3.4. The following conditions on BCI-algebra are equivalent:

- (i) P is p-projective;
- (ii) if $\psi: B \to C$ is a BCI-epimorphism of p-semisimple BCI-algebras, then $Hom(P, \psi): Hom(P, B) \to Hom(P, C)$ is a BCI-epimorphism;
- (iii) if $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is any short exact sequence of p-semisimple BCI-algebras, then $0 \to Hom(P,A) \to Hom(P,B) \to Hom(P,C) \to 0$ is an exact sequence of BCI-algebras.

PROOF. (i) \Rightarrow (ii): Let $\psi: B \to C$ be a BCI-epimorphism of p-semisimple BCI-algebras. Then the hom functor $Hom(P,\psi): Hom(P,B) \to Hom(P,C)$ is a BCI-homomorphism. We claim that $Hom(P,\psi)$ is onto. In fact, for any $g \in Hom(P,C)$, since P is p-projective, there exists a BCI-homomorphism $h: P \to B$ such that $g = \psi \circ h = \psi \circ h \circ 1_P = Hom(1_P,\psi)(h) = Hom(P,\psi)(h)$. Hence $Hom(P,\psi)$ is a BCI-epimorphism.

- (ii) \Rightarrow (i): Let $f: P \to C$ be a BCI-homomorphism and let $\psi: B \to C$ be a BCI-epimorphism of p-semisimple BCI-algebras. It follows from the condition (ii) that $Hom(P,\psi): Hom(P,B) \to Hom(P,C)$ is a BCI-epimorphism. Since $f \in Hom(P,C)$, there exists $h \in Hom(P,B)$ such that $Hom(P,\psi)(h) = f$, i.e., $\psi \circ h = f$. This means that there exists a BCI-homomorphism $h: P \to B$ such that $\psi \circ h = f$, i.e., P is p-projective.
- (ii) \Rightarrow (iii): By Theorem 2.4'.
- (iii) \Rightarrow (ii): Let $\psi: B \to C$ be a BCI-homomorphism and let $A:=Ker\psi$. Then $0 \to A = Ker\psi \xrightarrow{i} B \xrightarrow{\psi} C \to 0$ is a short exact sequence of p-semisimple BCI-algebras. It follows from the condition (iii) that $0 \to Hom(P,A) \xrightarrow{Hom(P,i)} Hom(P,B) \xrightarrow{Hom(P,\psi)} Hom(P,C) \to 0$ is an exact sequence of BCI-algebras, and hence $Hom(P,\psi): Hom(P,B) \to Hom(P,C)$ is a BCI-epimorphism, completing the proof.

The hom functor $Hom(P,_{-})$ discussed in Theorem 3.4 is said to be exact if it satisfies the condition (iii) of Theorem 3.4. With this concept we conclude that $Hom(P,_{-})$ is exact if P is a p-projective BCI-algebra.

References

- S. S. Ahn and H. S. Kim, A hom functor in BCK/BCI-algebras, Kyungpook Math J. 40 (2000), no. 2, 269-274.
- Z. M. Chen and H. X. Wang, Some universal properties of BCI-algebras, Kobe J. Math. 6 (1989), 43-48.
- [3] E. Y. Deeba and S. K. Goel, A note on BCI-algebras, Math. Japonica 33 (1988), 517–522.
- [4] C. S. Hoo and Y. B. Jun, p-Projective BCI-algebras, Math. Japonica 38 (1993), 841–847.
- [5] C. S. Hoo and P. V. R. Murty, A note on associative BCI-algebras, Math. Japonica 32 (1987), 53-55.
- Y. B. Jun and J. Meng, On Hom(-,-) as BCK/BCI-algebras, Kyungpook Math. J. 35 (1995), no. 1, 77-83.
- [7] Y. B. Jun, J. Meng and S. M. Wei, A note on Hom(-,-) as BCI-algebras, Commun. Korean Math. Soc. 8 (1993), no. 1, 103–110.
- [8] Y. Liu, Some results on p-semisimple BCI-algebras, Math. Japonica 37 (1992), 79-81.
- [9] _____, On projective and p-projective BCI-algebras, Selected Papers on BCK-and BCI-algebras (1992), 54–59.
- [10] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul, 1994.

[11] D. G. Northcott, A first course of homological algebra, Cambridge Univ. Press, London, 1973.

Sun Shin Ahn
Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea
E-mail: sunshine@dgu.ac.kr

Keumgseong Bang Department of Mathematics The Catholic University of Korea Puchon 420-743, Korea E-mail: bang@www.cuk.ac.kr