DOI QR코드

DOI QR Code

활성탄 또는 촉매가 장착된 배리어 유전체 방전 하이브리드. 공기청정 시스템의 나노입자 및 잔류 오존 제거 특성

Nano Particle Precipitation and Residual Ozone Decomposition of a Hybrid Air Cleaning System Comprising Dielectric Barrier Discharge Plasma and MnO2 Catalyst or Activated Carbon

  • 변정훈 (연세대학교 대학원 기계공학과) ;
  • 황정호 (연세대학교 기계공학과) ;
  • 지준호 (연세대학교 대학원 기계공학과) ;
  • 강석훈 (연세대학교 대학원 기계공학과)
  • 발행 : 2003.04.01

초록

DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Aim of this work is to determine design and operating parameters of a hybrid air cleaning system. DBD and ESP(Electrostatic Precipitator) are used as nano particle charger and collector, respectively. Pelletized MnO$_2$ catalyst or activated carbon is used fer ozone decomposition or adsorption material. AC voltage of 7~10 KV(rms) and 60 Hz is used as DBD plasma source. DC - 8 KV is applied to the ESP for particle collection. The overall particle collection efficiency for the hybrid system is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized MnO$_2$ catalyst or activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

키워드

참고문헌

  1. Eliasson, B., 1991, 'Nonequilibrium Volume Plasma Chemical Processing,' IEEE Trans. Plasma Sci., Vol. 19, No. 6, pp. 1063-1077 https://doi.org/10.1109/27.125031
  2. Einaga, H., Ibusuki, T., and Futamura, S., 2000, 'Performance Evaluation of Hybrid Systems Comprising Silent Discharge Plasma and Catalysts for VOC Control,' IEEE Ind. Appl. Conf., Vol. 2 pp. 858-863 https://doi.org/10.1109/IAS.2000.881932
  3. Nagao, l., Nishada, M., Yukimura, K., Kambara, S., and Maruyama, T., 2001, 'NOx Removal Using Nitrogen Gas Activated by Dielectric Barrier Discharge at Atmospheric Pressuer,' Vacuum, Vol. 65, pp. 481-487 https://doi.org/10.1016/S0042-207X(01)00460-2
  4. Takaki, K., Jani, M. A., Fujiwara, T., 1999, 'Removal of Nitric Oxide in Flue Gases by Multipoint to Plane Dielectric Barrier Discharge,' IEEE Trans. Plasma Sci., Vol. 27, No. 4, pp. 1137-1145 https://doi.org/10.1109/27.782294
  5. Okubo, M., Kuroki, T., Kametaka, H., and Yamamoto, T., 2001, 'Odor Control Using the AC Barrier-type Plasma Reactors,' IEEE Trans. Industry Applications, Vol. 37, No. 5, pp. 1447-1455 https://doi.org/10.1109/28.952520
  6. Wilson, C. R., Giddings, T. J., and Smith, P. W., 1997, 'The Use of Barrier Discharges for Pollution Control,' The lnstiution of Electrical Engineers, pp. 14/1-14/3
  7. Falkenstein, Z., 1998, 'Application of Dielectric Barrier Discharges,' 12th lnt. Conf. High-Energy Particle Beams, pp. 117-120 https://doi.org/10.1109/BEAMS.1998.822399
  8. Penetrante, B. M., Hsiao, M. C., and Merritt, B. T., 1995, 'Comparison of Electrical Discharge Techniques for Nonthermal Plasma Processing of NO in N2,' IEEE Trans. Plasma Sci., Vol. 23, No. 4, pp. 679-687 https://doi.org/10.1109/27.467990
  9. Futamura, S., Einaga, H., and Zhang, A., 2001, 'Comparison of Reactor Performance in the Nonthermal Plasma Chemical Processing of Hazardous Air Pollutants,' IEEE Trans. Plasma Sci., Vol. 37, No. 4, pp. 978-985 https://doi.org/10.1109/28.936387
  10. Sano, Y., Kuroda, Y., Kawada, Y., Takahashi, T., Ehara, Y and Ito, T., 2001, 'Effect of Electric Source Frequency at ESP by Barrier Discharge System,' J. Aerosol Sci. Vol. 32, pp. 883-884 https://doi.org/10.1016/S0021-8502(01)00128-8
  11. Hosoi, K., Sano, Y., Kawada, Y., Takahashi, T., Ehara, Y., Ito, T., Zukeran, A., Kono, Y. and Yasumoto, K., 2002, 'Cleaning Technique of Collecting Electrode for Barrier Discharge Type Electrostatic Precipitator,' 6th Int. Aerosol. Conf., pp. 973-974
  12. Hwang, J., 2002, 'Air Cleaning Technologies Using Nonthermal Plasma,' Korean Society of Air cleaning Tech., Vol. 56, pp. 87-89
  13. Rice, C. R. and Netzer, A., 1982, Handbook of Ozone Technology and Applications, Ann Arbor Science, pp. 41-75
  14. Dorsey, J. A. and Davidson, J. H., 1994, 'Ozone Production in Electrostatic Air Cleaners with Contaminated Electrodes,' IEEE Trans. Industry Applications, Vol. 30, No. 2, pp. 370-376 https://doi.org/10.1109/28.287521
  15. Viner, A. S., Lawless, P. A., Ensor, D. S., Sparks, L. E., 1992, 'Ozone Generation in DC-Energized Electrostatic Precipitators,' IEEE Trans. Industry Applications, Vol. 28, No. 3, pp. 504-512 https://doi.org/10.1109/28.137427
  16. Oyama, S. T. and Dhandapani, B., 1997, 'Gas Phase Ozone Decomposition Catalysts,' Applied Catalysis B : Environmental, Vol. 11, pp. 129-166 https://doi.org/10.1016/S0926-3373(96)00044-6
  17. Boelter, K. J. and Davidson, J. H., 1997, 'Ozone Generation by Indoor, Electrostatic Air Cleaner,' Aerosol Sci. Technol., Vol. 27, No. 6, pp. 689-708 https://doi.org/10.1080/02786829708965505
  18. Einaga, H., Ibusuki, T., and Futamura, S., 2001, 'Performance Evaluation of a Hybrid System Comprising Silent Discharge Plasma and Manganese Oxide Catalyst for Benzene Decomposition,' IEEE Trans. Industry Applications, Vol. 37, No. 5, pp. 1476-1482 https://doi.org/10.1109/28.952524
  19. Lin, J., Kawai, A., and Nakajima, T., 2002, 'Effective Catalysts for Decomposition of Aqueous Ozone,' Applied Catalysis B: Environmental, in press https://doi.org/10.1016/S0926-3373(02)00081-4
  20. Kang, S. H., Ji, J. H., Byeon, J. H. and Hwang, J., 2002, 'Collection Efficiency of Nano Particles by Electrostatic Precipitator Using Dielectric Barrier Discharge,' Korean Society of Mechanical Engineering, in press https://doi.org/10.3795/KSME-B.2003.27.11.1542
  21. Yoo, K. H., Lee, J. S. and Oh, M. D., 1997, 'Charging and Collection of Submicron Particles in Two-Stage Parallel Electrostatic Precipitators,' Aerosol Sci. Technol., Vol. 27, No. 3, pp. 308-323 https://doi.org/10.1080/02786829708965476
  22. Linmao, L., Jingfu, G., Jie, L. and Lianxi, S., 1997, 'The Effect of Corona Wire Heating and Geometry on Ozone Generation in a Negative Ion Air Cleaner,' IEEE Industry Applications Conf., Vol. 3, pp. 1744-1749 https://doi.org/10.1109/IAS.1997.626290
  23. Ohkubo, T., Hamasaki, S., Nomoto, Y., Chang, J. S., and Adachi, T., 1990. 'The Effect of Corona Wire Heating on the Downstream Ozone Concentration Profiles in an Air-Cleaning Wire-Duct Electrostatic Precipitator,' IEEE Trans. Plasma Sci., Vol. 26, No. 3, pp. 542-549 https://doi.org/10.1109/28.55962
  24. Moon, J. D., Lee, G. T., and Geum, S. T., 2000, 'Discharge and NOx Removal Characteristics of Nonthermal Plasma Reactor with A Heated Corona Wire,' J. Electrostatics, Vol. 50, pp. 1-15 https://doi.org/10.1016/S0304-3886(00)00011-5
  25. Sydney, W. B. and Arthur, E. A., 1957, 'Mechnism of the Gas Phase, Thermal Decomposition,' J. Chemical Physics, Vol. 26, No. 6, pp. 1718-1726 https://doi.org/10.1063/1.1743610
  26. Liu, L., Guo, J., Li, J., and Sheng, L., 2000, 'The effect of Wire Heating and Configuration on Ozone Emission in A Negative Ion Generator,' J. Electrostatics, Vol. 48, pp. 81-91 https://doi.org/10.1016/S0304-3886(99)00049-2