동양종과 서양종 꿀벌의 표피탄화수소 성분 분석

Chemical Analysis of Cuticular Hydrocarbons in Apis mellifera L. and Apis cerana F.

  • 이창주 (광주대학교 토목환경공학부) ;
  • 신경우 (전남대학교 응용생물공학부 농업기술연구소) ;
  • 박승찬 (전남대학교 산림자원조경학부) ;
  • 심재한 (전남대학교 응용생물공학부 농업기술연구소)
  • 발행 : 2003.03.01

초록

꿀벌 2종 Apis mellifera L.(서양종)와 Apis cerana F.(동양종)일벌의 안테나, 다리 그리고 날개의 표피 탄화수소를 용매추출을 거치지 않고 직접 GC와 GC/MS를 이용하여 분석 하였다. 동양종과 서양종 일벌의 세 부위에서 nC22, nC23, nC25-nC3O, nC32 그리고 nC34와 같은 포화탄화수소를 검출하였고 nC24의 경우는 어느 종에서도 발견되지 않았다. 전체 포화탄화수소 중 nC26(23.0-42.6%)과 nC28(16.8-54.8%)의 함량비율이 높았고 나머지 포화탄화수소의 함량은 상대적으로 낮은 비율을 나타냈다. 서양종 일벌의 경우, 안테나, 날개 그리고 다리 부위에서 분석한 표피탄화수소 중 nC30, nC32 그리고 nC34가 항상 높은 함량비율로, nC25가 낮은 함량비율로 검출됨으로써 동양종 일벌과 구별할 수 있었다.

Cuticular hydrocarbons of antenna, legs and wings from two species of honeybee worker of Apis mellifera L. and Apis cerana F. can be analyzed directly with gas chromatograph and GC/MS without solvent extraction. The saturated hydrocarbons identified in selected part of both species were nC22, nC23, nC25-nC3O, nC32 and nC34 except nC24. Two saturated hydrocarbons, nC26 (23.0-42.6%) and nC28 (16.8-54.8%), were major compounds in both species and others were minor compounds. A. mellifera can be distinguished from A. cerana F. by having higher proportion of nC30, nC32 and nC34 by having lower proportion of nC25 from three selected part of both species.

키워드

참고문헌

  1. $Bagn\dot eres$, A.G. and E.D. Morgan. 1990. A simple method for an-alysis of insect cuticular hydrocarbons. J. Chem. Ecol. 16: 3263-3276 https://doi.org/10.1007/BF00982097
  2. Blomquist, G.J., A.J. Chu and S. Remaley. 1980. Biosynthesis ofwax in the honeybee, Apis mellifera L. Insect Biochem. 10:313-321 https://doi.org/10.1016/0020-1790(80)90026-8
  3. Grunshaw, J.P., H. Guermouche, S. Guemouche, N.D. Jago, R.Jullien, E. Knowles and F. Perez. 1990. Chemical taxonomicstudies of cuticular hydrocarbons in locusts of the schisto-cercana complex (Acrididae: Cyrtacanthacridinae): Chemicalrelationships between new world and old world species. J.Chem. Ecol. 16: 2835-2856 https://doi.org/10.1007/BF00979477
  4. Hadley, N.F., G.J. Blomquist and U.N. Lanham, 1981. uticularhydrocarbons of four species of colorado hymenoptera. InsectBiochem. 11: 173-177
  5. Haverty, M.I., B.T. Forschler and L.J. Nelson. 1996a. An assess-ment of the taxonomy of reticulitermes (Isoptera: Rhinotermiti-dae) from the southeastern united states based on cuticularhydrocarbons. Sociobiology. 28: 287-318
  6. Haverty, M.I., B.L. Thorne and L.J. Nelson, 1996b. Hydrocarbonsof nasutitermes acajutlae and comparison of methodologies forsampling cuticular hydrocarbons of caribbean termites fortaxonomic and ecological studies. J. Chem. Ecol. 22: 2081-2109 https://doi.org/10.1007/BF02040096
  7. Haverty, M.I., B.L. Thorne and P. Marion. 1990. Surface hydro-carbon components of two species of Nasutitermes from trini-dad. J. Chem. Ecol. 16: 2441-2450 https://doi.org/10.1007/BF01017467
  8. Jackson, L.L. and G.J. Blomquist. 1976. Insect waxes, pp: 201-233. in Chemistry and Biochemistry of Natural Waxes, Eds. P.E. Kolattukudy. Elsevier, Amsterdam
  9. Lockey, K.H. 1984. Hydrocarbons of Metriopus (haag) and Renatiella scrobipennis (haag) (Coleoptera: Tenebrionidae).Insect Biochem. 14: 65-75 https://doi.org/10.1016/0020-1790(84)90085-4
  10. Morgan, E.D. and L.J. Wadhams. 1972. Gas chromatography ofvolatile compounds in small samples of biological materials. J.Chromatogr. Sci. 10: 528-529 https://doi.org/10.1093/chromsci/10.8.528
  11. Morgan, E.D. 1990. Preparation of small-samples from insects forchromatography. Analytica Chimica Acta. 236: 227-235 https://doi.org/10.1016/S0003-2670(00)83316-4
  12. Nelson, D.R., J.W. Dillwith and G.J. Blomquist. 1981. Cuticularhydrocarbons of the house fly, Musca domestica. Insect Bio-chem. 11:187-197 https://doi.org/10.1016/0020-1790(81)90095-0
  13. Nelson, D.R. and D.A. Carlson. 1986. Cuticular hydrocarbons ofthe tsetse flies Glossina morsitans morsitans, G. Austeni and G.Pallidipes. Insect Biochem. 16:403-416 https://doi.org/10.1016/0020-1790(86)90054-5
  14. Pappas, C.D., B.J. Bricker, J.A. Christen and S.A. Rumbaugh.1994. Cuticular hydrocarbons of Aedes hendersoni cockerelland A. triseriatus SAY)I. J. Chem. Ecol. 20:1121-1136 https://doi.org/10.1007/BF02059748
  15. Patricia Juarez, G.J. Blomquist and C.J. Schofield. 2001. Hydro-carbons of Rhodnius prolixus, a chagas disease vector. Com.Bionchem. Physiol. B. 129: 733-746 https://doi.org/10.1016/S1096-4959(01)00380-3
  16. Singer, T.L. 1998. Role of hydrocarbons in the recognition sys-tems of insects. Am. Zool. 38: 394-405 https://doi.org/10.1093/icb/38.2.394
  17. Tissot, M., D.R. Nelson and D.M. Gordon. 2001. Qualitative andquantitative differences in cuticular hydrocarbons betweenlaboratory and field colonies of Pogonomyrmex barbatus. Com.Biochem. Physiol. B. 130: 349-358 https://doi.org/10.1016/S1096-4959(01)00436-5
  18. Wagner, D., M. Tissot, W. Cuevas and D.M. Gordon. 2000. Har-vester ants utilize cuticular hydrocarbons in nestmate recogni-tion. J. Chem. Ecol. 26: 2245-2257 https://doi.org/10.1023/A:1005529224856