DOI QR코드

DOI QR Code

Fabrication and Magnetic Properties of BaFe12-2xCoxTixO19 Powders

BaFe12-2xCoxTixO19 분말의 제조 및 자기특성 연구

  • Published : 2003.02.01

Abstract

M-type hexagonal BaF $e_{12-2x}$ $Co_{x}$ $Ti_{x}$ $O_{19}$ (0$\leq$x$\leq$1.0) ferrite powders prepared by a sol-gel method. The crystallographic and magnetic properties were characterized with a x-ray diffraction (XRD), thermogravimetry (TG), differential thermal analysis (DIA), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and Mossbauer spectroscopy. The result of XRD measurements show that the a and c lattice parameters increase with increasing x from $\alpha$=5.882 and c=23.215 $\AA$ for $\chi$=0.0, to $\alpha$=5.895 and c=23.295 $\AA$ for $\chi$=1.0. From the Mossbauer results, the $Co^{2+}$- $Ti^{4+}$ site occupancies have been affected the changes in the magnetization and in the coercivity. The Curie temperature linearly decreases with increasing $Co^{2+}$- $Ti^{4+}$ concentration x.

BaF $e_{12-2x}$ $Co_{x}$ $Ti_{x}$ $O_{19}$ (0$\leq$x$\leq$1.0) 분말을 sol-gel을 이용하여 제조하였다. 결정학적 및 자기적 성질을 x선 회절분석기(XRD), 열분석기(TG/DTA), 적외선분광기(FT/IR), 시료진동형자화율측정기(VSM), 및 Mossbauer 분광기를 이용하여 연구하였다. X선 회절 분석결과 격자상수 $\alpha$와 c는 x=0.0일 때 $\alpha$=5.822, c=23.215 $\AA$에서 x=1.0일 때 $\alpha$=5.895, c=23.295 $\AA$으로 x의 치환량이 늘어남에 따라 증가함을 알 수 있었다. Mossbauer 스펙트럼 분석 결과 $Co^{2+}$- $Ti^{4+}$ 이온의 site 점유도가 포화자화 값과 보자력을 조절할 수 있음을 알 수 있었다. $Co^{2+}$$Ti^{4+}$ 의 치환량이 증가함에 따라 Curie 온도는 선형적으로 감소함을 알 수 있었다.

Keywords

References

  1. IEEE Trans. Mag. v.38 Q. Feng;L. Jen https://doi.org/10.1109/20.996032
  2. J. Appl. Phys. v.92 Z. W. Li;L. Chen;C. K. Ong https://doi.org/10.1063/1.1506387
  3. J. Appl. Phys. v.57 O. Kubo;T. Ido;H. Yokoyama;Y. Koike https://doi.org/10.1063/1.334585
  4. J. Magn. Magn. Mater. v.176 K. Kakizaki;N. Hirastuka;T. Namikawa https://doi.org/10.1016/S0304-8853(97)00634-3
  5. J. Magn. Magn. Mater. v.140-144 P. Watewig;K. Melzer (et al.) https://doi.org/10.1016/0304-8853(94)00984-8
  6. J. Appl. Phys. v.87 C. S. Kim;S. W. Lee;S.Y. An https://doi.org/10.1063/1.372668
  7. IEEE Trans. Mag. v.35 C. S. Kim;S. Y. An;J. H. Son;J. G. Lee;H. N. Oak
  8. J. Magnetics v.6 S. Y. An;S. W. Lee;I. B. Shim;S. R. Yun;C.S. Kim
  9. Element of x-ray diffraction B. D. Culity
  10. IEEE Trans. on Magn. v.27 X. Z. Zhou;A. H. Morrish;Z. W. Li;Y. K. Hong https://doi.org/10.1109/20.278906
  11. Phys. Rev.B v.62 Z. W. Li;C. K. Ong;Z. Yang;F. L. Wei;X. Z. Zhou;J. H. Zhao;A. H. Morrish https://doi.org/10.1103/PhysRevB.62.6530
  12. J. Magn. Magn. Mater v.101 Gruskova;J. Slama;M. Michalikova https://doi.org/10.1016/0304-8853(91)90738-V
  13. IEEE Trans. Magn. v.23 Y. Zheng;L. Jian-Zhong;Z. Pei;G. Sheng-Li
  14. J. Magn. Magn. Mater. v.176 K. Kakizaki;N. Hirastuka;T. Namikawa https://doi.org/10.1016/S0304-8853(97)00634-3
  15. Philips Tech. Rev. v.13 J. J. Went (et al.)
  16. J. Magn. Magn. Mater. v.234 G. Mendoza-Suarez (et al.) https://doi.org/10.1016/S0304-8853(01)00286-4
  17. J. Magn. Magn Mater. v.115 Z. Yang;H. Zeng;D. Han;J. Liu;S. Geng https://doi.org/10.1016/0304-8853(92)90185-Q