A Study for Improvement Effect of Paralleled Genetic Algorithm by Using Clustering Computer System

클러스터링 컴퓨터 시스템을 이용한 병렬화 유전자 알고리듬의 효율성 증대에 대한 연구

  • 이원창 (창원대학교 대학원 기계공학과) ;
  • 주지한 (창원대학교 대학원 기계공학과) ;
  • 성활경 (창원대학교 기계공학과)
  • Published : 2003.04.01

Abstract

Among the optimization method, GA (genetic algorithm) is a very powerful searching method enough to compete with design sensitivity analysis method. GA is very easy to apply, since it dose not require any design sensitivity information. However, GA has been computationally not efficient due to huge repetitive computation. In this study, parallel computation is adopted to improve computational efficiency. Paralleled GA is introduced on a clustered LINUX based personal computer system.

Keywords

References

  1. Goldberg, D. E., 'Genetic algorithm in search optimization, and machine learning,' Addison-Wesley, pp. 1-25, pp. 136-137, 1989
  2. Park, H. S., Sung, C. W., 'Optimization of Steel structures using distributed annealing algorithm on a cluster of personal conputers,' International journal Computer and Structures, Vol. 80, pp. 1305 -1316, 2002 https://doi.org/10.1016/S0045-7949(02)00073-1
  3. 백운태, 성활경, '유전자 알고리즘에 의한 드릴링 머신의 설계 최적화 연구,' 한국정밀공학회지, 제14권, 제12호, pp. 25-27, 1997
  4. 김종현, '병렬컴퓨터구조론,' 생능출판사, pp. 27-121, 1996
  5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V. and Kowalik, J., 'PVM: Parallel Virtual Machine A Users' Guide and Tutorial for Networked Parallel Computing,' The MIT Press, pp. 11-43, 1994
  6. Cook, R. D., Malkus, D. S. and Plesha, M. E., 'Concepts and Applications of Finite element analysis,' WILEY, pp.31-57, 1989
  7. Kirch, O., Dawson, T., 'Linux Network Administrator's Guide,' O'reilly, pp. 365-374, 2000
  8. Haig, E. J., Arora, J. S., 'Applied Optimal Design,' A Wiley Interscience Publication, John Wiley & Sons, Inc., pp. 245-248, 1995