Simple and Quantitative Analysis Method for Lactic Acid by TLC

젖산의 빠른 정량적 분석을 위한 TLC 최적 조건

  • 최미화 (전남대학교 물질·생물화학공학과) ;
  • 조갑수 (전남대학교 분자생물공학과) ;
  • 강희경 (공업기술연구소) ;
  • 윤종선 (전남대학교 응용화학공학부) ;
  • 서은성 (전남대학교 물질·생물화학공학과) ;
  • 류화원 (전남대학교 응용화학공학부) ;
  • 장세효 ((주)진성 SMR) ;
  • 윤승헌 (미국 아이오와주립대학교 생화학과) ;
  • 김도만 (전남대학교 응용화학공학부)
  • Published : 2003.02.01

Abstract

TLC condition was developed for its simple separation and quantitative analysis of lactic acid. Rapid and clear separation of lactic acid by silica gel TLC plate was obtained by using nitromethane : 1-propanol : $H_2O$ (2 : 5 : 1.5, v/v/v) and a suitable dipping solution of 40 mg bromocresol purple in 100 mL 5% ethanol (pH 10.0). The lactic acid was shown as a bright yellow spot on a light cinnabar background. The quantitatively detectable concentration range of lactic acid was between 0.5 and 4% with 99.4%, confidence. Quantitative TLC analysis result was confirmed with HPLC and with enzymatic Quantitative analysis methods (by using lactate dehydrogenase).

TLC를 이용하여 시료에 있는 젖산을 간편하고 신속하게 분리하고 정량 분석 할 수 있는 조건을 개발하였다. Silicagel TLC plate를 사용하는 경우 전개용매로 Nitromethane : 1-Propanol $H_2O$를 2 : 5 : 1.5 (v/v/v)의 비율로 섞어 사용하고 발색시약으로 Bromocresol purple 을 50% 에탄올 100 mL에 녹여(pH 10) 준비한 Bromocresol purple reagent를 사용하였을 때, 젖산은 엷은 주홍색의 TLC plate의 바탕에 자은 노란색 spot으로 확인되었으며 이 조건으로 0.5 - 4% 농도 범위의 젖산을 포함한 시료를 희석 없이 99.4%의 신뢰도로 쉽게 정량 분석할 수 있었고, 개발한 조건의 유효성은 HPLC 와 lactate dehydrogenase를 이용한 젖산 정량 분석으로 확인되었다.

Keywords

References

  1. Global report, Modern Plastics v.77 Cargill Dow to start up giant PLA plant
  2. Memb. Technol. v.109 Production of organic acids by electrodialysis/pervaporation process Tsai, S. P.;R. Datta;M. Henry;Y. Halpern;J. R. Frank
  3. J. Food Prot. v.65 Thermophilic lactic acid bacteria phages isolated from Argentinian dairy industries Suarez, V. B.;A.Quiberoni;A. G. Binetti;J. A. Reinheimer
  4. J. Agric. Food Chem. v.50 Isolation and characterization of lactic acid bacteria from feces of newborn baby and from dongchimi Park, Y. S.;J. Y. Lee;Y. S. Kim;D. H. Shin
  5. Int. J. Syst. Evol. Microbiol. v.52 Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi Choi, H. J.;C. I. Cheigh;S. B. Kim;J. C. Lee;D. W. Lee;S. W. Choi;J. M. Park;Y. R. Pyun
  6. The Principle of Instrument Analysis Guen, S. H.;Y. S. Guen;Y. S. Kim;G. C. Park;Y. J. Yun;G. Y. Cha;H. S. Choi
  7. The Introduction of Instrument Analysis Choi, J. S.
  8. The theory and practice of HPLC Park, C. I.;C. H. Lee
  9. Instrumental analysis in the Biological Sicence Gorden, M. H.;R. Macrae
  10. Carbohydr Res. v.251 Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin layer chromatography Robyt, J. F.;R. Mukerjea
  11. Kor. J. Appl. Microbiol. Biotechnol. v.5 The present condition and future of organic acid fermentation industry Li, E. G.
  12. J. Microbiol. Biotechnol. v.9 Enzymatic modification of cellulose using Leuconostoc mesenteroides B-742CBM dextransucrase Kim, D.;Y. M. Kim;M. R. Park;H. J. Ryu;D. H. Park;J. F. Robyt
  13. J. Microbiol. Biotechnol. v.10 Cloning and sequencing of the α-1→6 dextransucrase gene from Leuconostoc mensenteroides B-742CB Ki, H. S.;D. Kim;H. J. Ruy;J. F. Robyt
  14. Kor. J. Appl. Microbiol. Biotechnol. v.26 Enzymatic synthesis of new oligosaccharide using glucansucrases Baek, J. S.;D. Kim;J. H. Lee;P. S. Chang;N. S. Han;J. F. Robyt
  15. Thin-Layer Chromatography (Reagents and detection methods) Jork, H.;W. Funk;W. Fischer;H. Wimmer
  16. Proc. Biochem. v.37 Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1 Yu, J. S.;H. W. Ryu
  17. FEBS v.290 Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli Bernard, B.;T. Ferain;D. Garmyn;P. Hols;J. Delcour
  18. J. Chromatogr. B v.774 7.7.8.8.-tetracyanoquinodimethane as a new derivatization reagent for high-performance liquid chromatography and thin-layer chromatography: rapid screening of plasma for some antidepressants Oztunc, A.;A. Onal;S. Erturk
  19. J. Microbiol. Meth. v.45 Thinlayer chromatographic determination of organic acids for rapid identification of bifidobacteria at genus level Lee, K. Y.;J. S. So;T. R. Heo
  20. Appl Microbiol. Biotechnol. v.51 Effect of temperature and pH on growth and product formation of Lactococcus lactis ssp. lactis ATCC 19435 growing on maltose Hofvendahl, K.;E. W. J. van Niel;B. Hahn-Hagerdal
  21. Appl. Microbiol. Biotechnol. v.56 Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441 Hujanen, M.;S. Linko;Y. Y. Linko;M. Leisola
  22. Enzyme Microbial Technol. v.17 Production, selection, and characteristics of mutants of Leuconostoc mesenteroides B-742 constitutive for dextransucrase Kim, D.;J. F. Robyt
  23. J. Microbiol. Biotechnol. v.9 Characterization of a novel carbohydrase from Lipomyces starkeyi KSM 22 for Dental Application Kim, D.;S. J. Ryu;S. J. Heo;D. W. Kim;H. S. Kim
  24. Kor. J. Appl. Microbiol. Biotechnol. v.26 Modification of pullulan using dextransucrase and characterization of the modified pullulan Lee, J. H.;D. Kim;H. J. Ryu;S. J. Heo;D. Y. Jhon;N. S. Han;J. F. Robyt
  25. J. Microbiol. Biotechnol. v.8 Acarbose effect for dextran synthesis, acceptor and disproportionation reactions of Leuconostoc mesenteroides B-512FMCM dextransucrase Kim, D.;K. H. Park;J. F. Robyt
  26. Appl. Microbiol. Biotechnol. v.51 Effect of temperature and pH on growth and product formation of Lactococcus lactis ssp. lactis ATCC 19435 growing on maltose Hofvendahl, K.;E. W. J. van Niel;B. Hahn-Hagerdal
  27. Appl. Microbiol. Biotechnol. v.56 Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441 Hujanen, M.;S. Linko;Y. Y. Linko;M. Leisola