DOI QR코드

DOI QR Code

DEFORMATION SPACES OF 3-DIMENSIONAL FLAT MANIFOLDS

  • Published : 2003.01.01

Abstract

The deformation spaces of the six orientable 3-dimensional flat Riemannian manifolds are studies. It is proved that the Teichmuller spaces are homeomorphic to the Euclidean spaces. To state more precisely, let $\Phi$ denote the holonomy group of the manifold. Then the Teichmuller space is homeomorphic to (1) ${\mathbb{R}}^6\;if\;\Phi$ is trivial, (2) ${\mathbb{R}}^4\;if\;\Phi$ is cyclic with order two, (3) ${\mathbb{R}}^2\;if\;\Phi$ is cyclic of order 3, 4 or 6, and (4) ${\mathbb{R}}^3\;if\;\Phi\;\cong\;{\mathbb{Z}_2}\;\times\;{\mathbb{Z}_2}$.

Keywords

References

  1. Crystal-lographic groups of four-dimensional space H. Brown;R. Bulow;J. Neubuser;H. Wondratschek;H. Zassenhaus
  2. Proceedings Conf. Geometry and Topology, Univ. of Maryland 1983-1984, Springer Lecture Notes in Mathematics v.1167 Deformation Space for Seifert Manifolds R. Kulkarni;K. B. Lee;F. Raymond;J. Alexander(ed.);J. Harer(ed.)
  3. Bieberbach Groups and Flat Manifolds L. S. Charlap
  4. Spaces of Constant Curvature J. Wolf

Cited by

  1. Teichmüller theory and collapse of flat manifolds vol.197, pp.4, 2018, https://doi.org/10.1007/s10231-017-0723-7