Abstract
The deformation spaces of the six orientable 3-dimensional flat Riemannian manifolds are studies. It is proved that the Teichmuller spaces are homeomorphic to the Euclidean spaces. To state more precisely, let $\Phi$ denote the holonomy group of the manifold. Then the Teichmuller space is homeomorphic to (1) ${\mathbb{R}}^6\;if\;\Phi$ is trivial, (2) ${\mathbb{R}}^4\;if\;\Phi$ is cyclic with order two, (3) ${\mathbb{R}}^2\;if\;\Phi$ is cyclic of order 3, 4 or 6, and (4) ${\mathbb{R}}^3\;if\;\Phi\;\cong\;{\mathbb{Z}_2}\;\times\;{\mathbb{Z}_2}$.