DOI QR코드

DOI QR Code

SOME INEQUALITIES FOR THE FINITE HILBERT TRANSFORM OF A PRODUCT

  • Dragomir, Sever-S. (School of Communications and Informatics Victoria University of Technology)
  • Published : 2003.01.01

Abstract

Some inequalities for the Hilbert transform of the product of two functions are given.

References

  1. Fourier Analysis and Approximation Theory v.1 P. L. Butzer;R. J. Nessel
  2. Computing v.15 Quadrature formulas for Cauchy principal value integrals M. M. Chawla;N. Jayarajan https://doi.org/10.1007/BF02260318
  3. Ricerche Mat. v.35 On the convergence of Gauss quadrature rules for the Cauchy principal value integrals G. Criscuolo;G. Mastroianni
  4. Numer. Math. v.54 On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals G. Criscuolo;G. Mastroianni https://doi.org/10.1007/BF01396323
  5. Methods of Numerical Integration(2nd Ed.) P. J. Davis;P. Rabinowitz
  6. Proc. Sympos. Appl. Math. v.48 Error estimates for a quadrature rule for Cauchy principal value integrals K. Diethelm https://doi.org/10.1090/psapm/048/1314858
  7. Computing v.52 Modified compound quadrature rules for strongly singular integrals K. Diethelm https://doi.org/10.1007/BF02276881
  8. Numer. Math. Peano kernels and bounds for the error constants of Gaussian and related quadrature rules for Cauchy principal value integrals K. Diethelm
  9. J. Comput. Appl. Math. v.56 no.3 Uniform convergence to optimal order quadrature rules for Cauchy principal value integrals K. Diethelm https://doi.org/10.1016/0377-0427(94)90086-8
  10. Approx. Theory Appl. (N.S.) v.11 no.4 Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on a piecewise linear interpolation K. Diethelm
  11. Theory of Inequalities and Applications Some inequalities for the finite Hibert transform N. M. Dragomir;S. S. Dragomir;P. Farrell;Y. J. Cho(Ed.);S. S. Dragomir(Ed.);S. S. Kim(Ed.)
  12. The application of Bullen's inequality for convex functions to the finite Hilbert transform S. S. Dragomir
  13. J. Comput. Appl. Math. v.66 A note on Peano constants of Gauss-Konrod quadrature schemes S. Ehrich https://doi.org/10.1016/0377-0427(95)00173-5
  14. Math. Comp. v.33 Gauss type quadrature rules for Cauchy principal value integrals D. Elliott;D. F. Paget https://doi.org/10.2307/2006042
  15. Boundary Value Problems(English traslation) F. D. Gakhov
  16. Numer. Math. v.19 Some Gauss type formulae for the evaluation of Cauchy principal value integrals D. B. Hunter https://doi.org/10.1007/BF01404924
  17. Bull. Amer. Math. Soc. v.48 A note on Hilbert's operator H. Kober https://doi.org/10.1090/S0002-9904-1942-07688-9
  18. IMA J. Numer. Anal. v.13 Error estimates for generalized compound quadrature formulas P. Kohler https://doi.org/10.1093/imanum/13.3.477
  19. Computing v.55 Asymptotically sharp error estimates for modified compound quadrature formulae for Cauchy principal value integrals P. Kohler
  20. Approx. Theory Appl. (N.S.) v.13 no.3 On the error of quadrature formulae for Cauchy principal value integrals based on piecewise interpolation P. Kohler
  21. Singular Integral Operators (English translation) S. G. Mikhlin;S. Prossdorf
  22. Computing v.29 The numerical evaluation of one-dimensional Cauchy principal value integrals G. Monegato
  23. J. Inst. Maths. Applics. v.26 Error estimates for three methods of evaluating Cauchy principal value integrals B. Noble;S. Beighton
  24. Mathematische Nach v.163 Holder continuous functions and the finite Hilbert transform S. Okada;D. Elliot
  25. Math. Comp. v.41 Gauss-Konrod integration rules for Cauchy principal value integrals P. Rabinowitz
  26. In Numerical Solution of Singular Integral Equations On the convergence of Hunter's method for Cauchy principal value integrals P. Rabinowitz;A. Gerasoulis;P. Vichnevetsky(Ed.)
  27. Computing v.48 On the numerical integration of certain singular integrals H. W. Stolle;R. $Strau\beta$ https://doi.org/10.1007/BF02310532
  28. Math. Comp. v.45 Corrigendum P. Rabinowitz https://doi.org/10.1007/BF02310532