Abstract
A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.