DOI QR코드

DOI QR Code

Selection of Optimum Pebbles Size in Sewage Treatment Plant by Natural Purification Method

자연정화공법에 의한 하수처리장에서 최적 여재 선정

  • Seo, Dong-Cheol (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Ju-Sik (School of Environment and Agricultural Science, Sunchon National University) ;
  • Park, Hyun-Geoun (Department of Environmental Engineering, Jinju National University) ;
  • Kim, Hyoung-Kab (Department of Environmental Engineering, Jinju National University) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Hong-Jae (Division of Applied Life Science, Gyeongsang National University)
  • 서동철 (경상대학교 응용생명과학부) ;
  • 조주식 (순천대학교 환경농업과학부) ;
  • 박현건 (진주산업대학교 환경공학과) ;
  • 김형갑 (진주산업대학교 환경공학과) ;
  • 허종수 (경상대학교 응용생명과학부) ;
  • 이홍재 (경상대학교 응용생명과학부)
  • Published : 2003.03.31

Abstract

An investigation was carried out to evaluate the effects of pebble size on the small-scale sewage treatment apparatus by natural purification method that consisted of aerobic and anaerobic plot. pH and EC in both plots varied minimally regardless of pebble size. DO in aerobic plot increased as the pebble size decreased. That in the anaerobic plot was slightly less in comparison with that of the aerobic plot but varied minimally, $2.4{\sim}5.1\;mg/L$ regardless of pebble size. Under all experimental conditions, removals of BOD, COD and turbidity in anaerobic plot were more than 98, 91 and 98, 98% respectively. Removals of T-N and T-P increased as pebble size decreased. Under all experimental conditions, removals of T-N and T-P in anaerobic plot were about $45{\sim}59$ and $480{\sim}96%$, respectively. Judging from the above results, it should be considered that the optimum pebble size and pebble permeability in both plot was $2{\sim}4$ and $0.1{\sim}4\;mm$, respectively.

농어촌 등에서 소규모로 발생하는 하수를 환경친화적이고 높은 하수처리효율을 유지하면서 하수처리장의 장기간 사용을 위한 최적의 여재를 선정하기 위하여 자연정화공법을 이용한 소형하수처리장치를 호기성조 및 혐기성조로 구분하여 시공한 다음, 하수처리량 및 여재 입경별 수처리 효율을 조사하였고, 호기성조와 혐기성조에서 여재 입경별 하수의 투수속도를 조사한 결과는 다음과 같다. 호기성조 처리수 및 방류수중의 pH 및 EC는 여재입경에 따라서 별 차이가 없었고, 용존산소는 호기성조를 통과한 호기성조 처리수의 용존산소는 큰 폭으로 증가하였으나 혐기성조를 통과한 방류수의 용존산소는 호기성조 처리수에 비해 약간 감소하여 여재입경 및 하수처리량에 따라서 별 차이가 없이 약 $2.4{\sim}5.1\;mg/L$정도이었다. BOD, COD 및 탁도 처리율은 여재 대($4{\sim}10\;mm$)를 사용했을 경우에도 호기성조 처리 수에서 BOD 처리율은 약 91%이상 COD 처리율은 73%이상, 탁도 처리율은 83%이상이었으며, 이들 처리율은 여재입경이 작을수록 증가하였고, 모든 조건에서 방류수중의 BOD 처리율은 98%이상, COD 처리율은 91%이상, 탁도 처리율은 98%이상이었다. 여재입경별 총 질소 및 총 인 처리율은 여재입경이 작을수록 약간 증가하였고, 모든 조건에서 방류수중의 총 질소 처리율은 약 $45{\sim}59%$, 총 인 처리율은 약 $80{\sim}96%$ 정도이었다. 하수 처리율 및 투수속도를 고려해 볼 때 하수처리장 호기성조의 최적입경은 $2{\sim}4\;mm$정도, 혐기성조의 최적입경은 $0.1{\sim}4\;mm$정도가 적절한 것으로 사료되었다. 따라서 이러한 조건을 자연정화공법을 이용한 하수처리장에 적용하면 높은 하수처리효율을 유지하면서 하수처리장의 공극폐쇄현상이 일어나지 않아 장기간 운전할 수 있을 것으로 판단된다.

Keywords

References

  1. 환경부 (2000) 환경백서, 환경부, p.357-486
  2. Jung. D. Y. (1999) Development of an Enviromnental Friendly Sewage Disposal Model for Agricultural and Fishing Village Areas, Journal of the Korea Society for Environmental Restoration and Revegetation Techoology, 2(1), 10-20
  3. Kwun, S. K. and Yoon, C. K. (1999) Performance for a small on-site wastewater treatment system using the absorbent biofilter in rural areas, Karean J. Envrion. Agri. 18(4), 310-315
  4. Jang. B. I. (2001) Physico-chemical characteristics of sand and water plants in constructed wetland for treatment of domestic sewage, Division of Applied Life Science, Gyeongsang National University
  5. Choi, J. S. (2001) Comparison of Performance of Wastewater Treatment Systems for Rural Area, Department of Agricultural Engineers Graduate School of Gyeongsang National University
  6. 이도원, 송동하, 임경수, 박은진, 강호정 (1999) 식생을 이용한 수질 관리 - 생태구, 경관, 유역 규모에서 생태학적 접근, 한국수자원학회지, 32(5), 134-147
  7. Yun, S. M (1998) The Anlaysis of Self-eleansing Power through the Sewage Disposal Model of Water Plants and Aggregate, Major in Technology Education Graduate School of Korea National University
  8. 한국수도협회 (1998) 한국부제정 상수도시설기준, p.9-12
  9. 환경부 (1996) 마을 하수도 시설기준 및 효율적 관리방안 연구, p.2-10
  10. 김종택, 문경환, 김진우 (2001) 수질오염공정시험방법해설 (하.폐수, 하천수, 호소), 신광출판사
  11. APHW, AWWA, WPCF (1989) Standard Methods for the Examination of Water and Wastewater, 17th ed., Port City Press, New York
  12. Kim, S. A. (2002) Change of infiltration rate according to affecting factors at vertical flow beds of the constructed wetlands, Major in Technology Education Graduate School of Korea National University
  13. Martin, T., Kaushik, N. K., Trevors, J. T. and Whieley, H. R. (1999) Review : Denitrification in temperate riparian zones, Water, Air and Soil Pollution, 109, 171-186 https://doi.org/10.1023/A:1005015400607
  14. Richardson, C. J. and 'Marshall, P. E. (1986) Processes controlling movement, storage, and export of phos phoros in a fen peatland, Ecological Mmographs, 56, 279-302 https://doi.org/10.2307/1942548
  15. Kang, H., Freeman, C., Lee, D. and Mitsch, W. J. (1998) Enzyme activities on constructed wetland : Implication for water quality amelioration, Hydrobiologia, 368, 231-235 https://doi.org/10.1023/A:1003219123729
  16. Geller, G (1997) Juengere Erfahrungen mit Pflanzenklaeranlagen, Wasser Abwasser Praxis, 5, 27-32
  17. Jean, H. G. (1994) The Survey of the Water Quality and Heavy Metal Contents of the water and plant in Mihochun, Department of Chemistry Graduate School of Kongju National University
  18. Richardson, C. J. and Marshall, P. E. (1986) Processes controlling movement, storage, and export of phosphorus in a fen peatland, Ecological Monographs, 56, 279-302 https://doi.org/10.2307/1942548
  19. Yoon, C. K, Kwun, S. K, Woo, S. H. and Kwon, T. Y. (1999) Review of 3 - year Experimental Data from Treatment Wetland for Water Quality Improvement in Rural Area, Journal of Korean Society on Water Quality, 15(4), 581-589
  20. 윤춘경, 권순국, 권태영 (1998) 인공습지의 농촌지역 오수 정화시설에 적용가능성 연구, 한국농공학회지, 40(3), 83-93
  21. 손금두, 손기수 (1999) 수질환경관계법규, 성안당
  22. 홍문관법연구 (2001) 환경관계법규(II) 수질편, 홍문관
  23. Lee, D. B., Kim, J. G., Kang, J. G, Kim, S. B., So, J. D. and Lee, K. J. (1994) Purification of Animal Wastewater Using a Reed-Sand-Filter System, Korean J. Environ. Agri. 13(2), 231-239
  24. Huang, J., Reneau, Jr. R B. and Hagedorn, C. (2000) Nitrogen removal in constructed wetlands employed to treat domestic wastewater, Wat. Res., 34(9), 2582-2588 https://doi.org/10.1016/S0043-1354(00)00018-X
  25. Lee, Y. D. and Kim, H. H. (1999) A Study on the Advanced Treatment of Wastewater by Plants, Journal of the Korean Environmental Sciences Society, 8(1), 75-81
  26. 양홍모 (1999) 수자원보전을 위한 점원 및 비점원 오염물의 자연생태적 친환경적 처리 인공습지 및 연못-습지 시스템, 한국수자원학회지, 32(5), 111-123

Cited by

  1. Selection of Optimum System in Constructed Wetlands for Treating the Hydroponic Waste Solution Containing Nitrogen and Phosphorus vol.45, pp.5, 2012, https://doi.org/10.7745/KJSSF.2012.45.5.764
  2. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage vol.23, pp.2, 2016, https://doi.org/10.1007/s11356-015-5214-z
  3. Evaluation of Wastewater Treatment Efficiency in Dongbokcheon Constructed Wetlands for Treating Non-point Source Pollution at Different Treatment Time and Wastewater Loading vol.44, pp.5, 2011, https://doi.org/10.7745/KJSSF.2011.44.5.929
  4. Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Treating Greenhouse Wastewater Under Different Filter Media, Configuration Methods and Agricultural Water Loading. vol.47, pp.1, 2014, https://doi.org/10.11614/KSL.2014.47.1.013
  5. Evaluation of Treatment Efficiencies of Pollutants in Boknae Bio-Park Constructed Wetlands vol.44, pp.2, 2011, https://doi.org/10.7745/KJSSF.2011.44.2.263
  6. Evaluation of Treatment Efficencies of Pollutants in Bongsan Constructed Wetlands for Treating Non-point Source Pollution vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1089