ON F-HARMONIC MAPS AND CONVEX FUNCTIONS

  • Published : 2003.12.31

Abstract

We show that any F-harmonic map from a compact manifold M to N is necessarily constant if N possesses a strictly-convex function, and prove 'Liouville type theorems' for F-harmonic maps. Finally, when the target manifold is the real line, we get a result for F-subharmonic functions.

Keywords