DOI QR코드

DOI QR Code

Improvement of Separation of Polystyrene Particles with PAN Membranes in Hollow Fiber Flow Field-Flow Fractionation

  • Shin, Se-Jong (Department of Chemical Engineering, Yonsei University) ;
  • Chung, Hyun-Joo (Department of Chemical Engineering, Yonsei University) ;
  • Min, Byoung-Ryul (Department of Chemical Engineering, Yonsei University) ;
  • Park, Jin-Won (Department of Chemical Engineering, Yonsei University) ;
  • An, Ik-Sung (Department of Chemical Engineering, Yonsei University) ;
  • Lee, Kang-Taek (Department of Chemical Engineering, Yonsei University)
  • Published : 2003.09.20

Abstract

Hollow Fiber flow field-flow fractionation (HF-FlFFF) has been tested in polyacrylonitrile (PAN) membrane channel in order to compare it with polysulfone (PSf) membrane channel. It has been experimentally shown that the separation time of 0.05-0.304 ${mu}m$ polystyrene latex (PSL) standards in PAN membrane channel is shorter than that in PSf channel by approximately 65%. The optimized separation condition in PAN membrane is ${\dot V}_{out}/{\dot V}_{rad}=1.4/0.12\;mL/min$, which is equal to the condition in PSf membrane channel. In addition both the resolution ($R_s$) and plate height (H) in PAN membrane channel are better than that in PSf membrane channel. The membrane radius was obtained by back calculation with retention time. It shows that the PSf membrane is expanded by swelling and pressure, but the PAN membrane doesn't expand by swelling and pressure.

Keywords

References

  1. Giddings, J. C. Science 1993, 260, 1456. https://doi.org/10.1126/science.8502990
  2. Giddings, J. C. Anal. Chem. 1981, 53, 1170A. https://doi.org/10.1021/ac00234a001
  3. Janca, J. Field-Flow Fractionation: Analysis of Macromoleculesand Particles (Chromatographic Science Series); Marcel Dekker:New York, U. S. A., 1987; Vol. 39.
  4. Caldwell, K. D. Anal. Chem. 1988, 60, 959A. https://doi.org/10.1021/ac00168a001
  5. Granger, J.; Dodds, J.; Leclerc, D.; Midoux, N. Chem. Eng. Sci.1986, 41, 3119. https://doi.org/10.1016/0009-2509(86)85049-7
  6. Walund, K. G.; Giddings, J. C. Anal. Chem. 1987, 59, 1332. https://doi.org/10.1021/ac00136a016
  7. Lee, H. L.; Reis, J. F. G.; Dohner, J.; Lightfoot, E. N. AIChE. J.1974, 20, 776. https://doi.org/10.1002/aic.690200420
  8. Jonsson, J. A.; Carlshaf, A. Anal. Chem. 1989, 61, 11. https://doi.org/10.1021/ac00176a004
  9. Carlshaf, A.; Jonsson, J. A. Sep. Sci. Tech. 1993, 1191.
  10. Carlshaf, A.; Jonsson, J. A. J. Microcol. Sep. 1991, 3, 411. https://doi.org/10.1002/mcs.1220030505
  11. Carlshaf, A.; Jonsson, J. A. Sep. Sci. Tech. 1993, 28, 1031. https://doi.org/10.1080/01496399308029236
  12. Wijnhoven, J. E. G. J.; Koon, J. P.; Poppe, H.; Kok, W. T. J.Chromatogr. 1995, 699, 119. https://doi.org/10.1016/0021-9673(95)00172-J
  13. Wijnhoven, J. E. G. J.; Koon, J. P.; Poppe, H.; Kok, W. T. J.Chromatogr. 1996, 732, 307. https://doi.org/10.1016/0021-9673(95)01263-X
  14. Lee, W. J.; Min, B. R.; Moon, M. H. Anal. Chem. 1999, 71,3449.
  15. Janka, J.; Chmelik, J.; Pribylova, D. J. Liq. Chromatogr. 1985, 8,2343. https://doi.org/10.1080/01483918508076575
  16. Giddings, J. C. Unified Separation Science; Wiley-Interscience:New York, U. S. A., 1991.
  17. Yau, W. W.; Kirkland, J. J.; Bly, D. D. Modern Size-ExclusionLiquid Chromatography; Wiley-Interscience: New York, U. S. A.,1979.
  18. Williams, P. S.; Moon, M. H.; Xu, Y.; Giddings, J. C. Chem. Eng.Sci. 1996, 51, 4477. https://doi.org/10.1016/0009-2509(96)00291-6
  19. Williams, P. S.; Kosh, T.; Giddings, J. C. Chem. Eng. Column.1992, 111, 121.
  20. Williams, P. S.; Lee, S.; Giddings, J. C. Chem. Eng. Column.1994, 130, 143.
  21. Williams, P. S.; Moon, M. H.; Giddings, J. C. Particle SizeAnalysis; Stanly-Wood, N. G.; Line, R. W., Eds.; Springer Verlag:Berlin, Germany, 1992.