• Title/Summary/Keyword: Polyacrylonitrile membrane

Search Result 33, Processing Time 0.023 seconds

The Preparation of Polyacrylonitrile Diagnostic Membranes for Blood Glucose Measurements (3) : Effects of Storage Environments on the Measurements of Glucose Concentration (혈당측정을 위한 폴리아크릴로니트릴 진단막의 제조(3) : 보관 환경이 글루코우즈의 농도 측정에 미치는 영향)

  • Kwon, Suk-Ky;Yu, Jae-Woo
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.222-227
    • /
    • 2009
  • Polyacrylonitrile diagnostic membranes were prepared to make blood-glucose self-checking system for diabetics. After the prepared polyacrylonitrile membranes were stored at sereval different environments, final absorbances at 680 nm were measured at various concentration in blood. The mesured blood-glucose level did not show the big differences at the various storage temperatures. It was found that the blood-glucose level decreased a little bit compared to the standard value after $10{\sim}30$ hours at high humidities.

The Preparation of Polyacrylonitrile Diagnostic Membranes for Blood Glucose Measurements (1) : Effects of Temperature and Humidity on the Measurements of Glucose Concentration (혈당측정을 위한 폴리아크릴로니트릴 진단막의 제조에 관한 연구(1) : 온도와 습도가 글루코우즈의 농도 측정에 미치는 영향)

  • Kwon, Suk-Ky;Park, In-Hee;Yoon, Do-Young
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.369-374
    • /
    • 2007
  • Polyacrylonitrile diagnostic membranes were prepared to measure blood glucose level of diabetics. Final absorbances at 680 nm through activated polyacrylonitrile membranes were measured at various concentration of glucose in plasma. The end-point results of K/S values obtained from the absorbances had a linear relationship toward the glucose concentration. The effect of temperature on the measurements of glucose concentration was studied. The stability of polyacrlonitrile diagnostic membranes was examined at RH 80%.

Improvement of Separation of Polystyrene Particles with PAN Membranes in Hollow Fiber Flow Field-Flow Fractionation

  • Shin, Se-Jong;Chung, Hyun-Joo;Min, Byoung-Ryul;Park, Jin-Won;An, Ik-Sung;Lee, Kang-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1333-1338
    • /
    • 2003
  • Hollow Fiber flow field-flow fractionation (HF-FlFFF) has been tested in polyacrylonitrile (PAN) membrane channel in order to compare it with polysulfone (PSf) membrane channel. It has been experimentally shown that the separation time of 0.05-0.304 ${mu}m$ polystyrene latex (PSL) standards in PAN membrane channel is shorter than that in PSf channel by approximately 65%. The optimized separation condition in PAN membrane is ${\dot V}_{out}/{\dot V}_{rad}=1.4/0.12\;mL/min$, which is equal to the condition in PSf membrane channel. In addition both the resolution ($R_s$) and plate height (H) in PAN membrane channel are better than that in PSf membrane channel. The membrane radius was obtained by back calculation with retention time. It shows that the PSf membrane is expanded by swelling and pressure, but the PAN membrane doesn't expand by swelling and pressure.

The Preparation of Polyacrylonitrile Diagnostic Membranes for Blood Glucose Measurements (2) : Effects of Blood Constituents on the Measurements of Glucose Concentration (혈당측정을 위한 폴리아크릴로니트릴 진단막의 제조(2) : 혈액속의 성분들이 글루코우즈의 농도 측정에 미치는 영향)

  • Kwon, Suk-Ky;Choi, Mi-Ok
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.268-273
    • /
    • 2008
  • Diagnostics membranes which were made of polyacrylonitrile were prepared for the measurements of blood glucose concentration. Final absorbances at 680nm through polyacrylonitrile diagnostic membranes were measured at various concentration of glucose in blood. It was found that the end-point results of varing absorbance values as time (K/S) had a linear relationship toward the blood glucose concentration. The effects of possible constituents in human blood on the glucose concentration measurements were examined. As a result, most of the chemicals did not affect seriously on the blood glucose measurements.

Studies on Preparation and Performance of Poly(acrylonitrile) Nano-composite Hollow Fiber Membrane through the Coating of Hydrophilic Polymers (친수성 고분자의 코팅을 통한 Poly(acrylonitrile) 나노복합중공사막의 제조 및 성능 연구)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.140-146
    • /
    • 2019
  • In this study, a selective layer of poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) was formed by layer-by-layer method onto a porous polyacrylonitrile (PAN) hollow fiber membrane as the suppoter membrane. The salting out method was used by adding Mg salt to the coating solution. Several experimental conditions of the ionic strength, polymer concentration, and coating time were investigated, and the flux and rejection were measured at the operating pressure of 2 atm for 100 mg/L of NaCl, $MgCl_2$, and $CaSO_4$ as the feed solution. The membranes coated with PSSA 20,000 ppm, coating time 3 minutes, ionic strength 1.0, PEI 30,000 ppm, coating time 1 minute, and ionic strength 0.1 were observed the best. In the 100 ppm NaCl, $MgCl_2$, and $CaSO_4$ feed solutions, the flux of 20.4, 19.4, and 18.7 LMH, and the rejection of 67, 90, and 66.6%, respectively.

Membrane Formation of Polyacrylonitrile and Its Copolymer

  • Ha, Seong-Yong;Park, Ho-Bum;Nam, Sang-Yong;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.34-35
    • /
    • 1997
  • The phase inversion is a significant phenomena in the preparation of membranes and wet spinning. In both these processes, a viscous dope solution is precipitated in a nonsolvent bath and a porous structure is formed under certain conditions. Such structure could have been considered as a diffusion controlled process. The membrane formation of the polymer solution includes both phase separation and gelation. We have studied the influence of variables on the final structure and tried to control the porosity and ultrafiltration(UF) performance of the polyacrylonitrile(PAN) and its copolymer.

  • PDF

Integration of Graphene Oxide Into PAN Nanofibers with Improved Physical Property (Graphene Oxide를 활용한 PAN 나노섬유 제조 및 물리적 특성 향상)

  • Lee, Jeonghun;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.255-262
    • /
    • 2017
  • In this study, systematic integration of graphene oxide (GO) into polyacrylonitrile (PAN) nanofibers was accomplished by electrospinning to examine their mechanical properties. Exfoliated GO was initially prepared by the modified Hummer's method, and the surface of the GO was modified with an organic surfactant (e.g., cetyltrimetylammonium chloride) to improve its stability and dispersity. The overall mechanical property of the nanofiber composite membranes was highly improved. Particularly, the composite membranes with the modified GO exhibited much improved mechanical property, presumably due to the increased stability and dispersity of GO during electrospinning.

Removal of Heavy Metal Ions from Wastewater by Polyacrylonitrile based Fibers: A Review (폴리아크릴로나이트릴 섬유를 기반으로 한 폐수에서의 중금속 이온 제거: 총설)

  • Oh, Hyunyoung;Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • Environmental pollution caused by the presence of heavy metal ion from growing industrialization or from leaching is increasing area of concern. There are several area of water purifications but among them adsorption on the functionalized polymer fibers is efficient and cost-effective method. Polyacrylonitrile (PAN) is exciting polymer due to the presence of excessive functional group which can be easily transformed for metal ion adsorption. PAN can be easily electrospun to prepare nanofiber that have higher surface area leading to better metal ion removal. Composite PAN fiber is yet another type of polymer covered in this review for waste water treatment.

Preparation of Porous Polyacrylonitrile Nanofibers Membrane for the MF Application (MF 적용을 위한 다공성 PAN 나노섬유막의 제조)

  • Ahn, Hyeonryun;Jang, Wongi;Tak, Taemoon;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.112-118
    • /
    • 2013
  • Polyancrylonitrile nanofiber membrane (PAM) was prepared by using the electrospinning method with a solution of polyacrylonitrile (PAN) in DMF. The pore-diameter of PAMs and the number of PAM's layer were controlled for the microfiltration (MF) application. In addition, in order to improve the water-flux, AN-PEGMA copolymers have been synthesized via free radical polymerization with poly (ethylene glycol) methyl ether methacrylate and azobisisobutylronitrile (AIBN), and then PAN/AN-PEGMA nanofiber membranes (PAM/APM) were prepared by electrospinning with a mixture of PAN (9 wt%) and AN-PEGMA (3 wt%) in DMF (88 wt%). The prepared membranes were investigated with FT-IR and E.D.S. It was confirmed through scanning electron microscope (SEM), porometer, and porosity analysis that the porous membrane with a uniform diameter (400~600 nm) and a uniform pore characteristics (0.5~0.4 ${\mu}m$) was prepared. For the MF application, water-flux measurements were investigated and then the result was shown that the water permeability value of PAM/APMs introduced AN-PEGMA copolymers was relatively higher than that of the PVdF commercial membrane. From these results, PAN nanofiber membranes prepared by electrospinning could be utilized as a MF membrane.