DOI QR코드

DOI QR Code

Effective Valence Shell Hamiltonian Calculations on Spin-Orbit Coupling of SiH, SiH+, and SiH2+

  • Chang, Ye-Won (Department of Chemistry and School of Molecular Science (BK21), Sungkyunkwan University) ;
  • Sun, Ho-Sung (Department of Chemistry and School of Molecular Science (BK21), Sungkyunkwan University)
  • Published : 2003.06.20

Abstract

Recently the ab initio effective valence shell Hamiltonian method $H^v$ has been extended to treat spin-orbit coupling in atoms or molecules. The quasidegenerate many-body perturbation theory based $H^v$ method has an advantage of determining the spin-orbit coupling energies of all valence states for both the neutral species and its ions with a similar accuracy from a single computation of the effective spin-orbit coupling operator. The new spin-orbit $H^v$ method is applied to calculating the fine structure splittings of the valence states of SiH, $SiH^+$, and $SiH^{2+}$ not only to assess the accuracy of the method but also to investigate the spin-orbit interaction of highly excited states of SiH species. The computed spin-orbit splittings for ground states are in good agreement with experiment and the few available ab initio computations. The ordering of fine structure levels of the bound and quasi-bound spin-orbit coupled valence states of SiH and its ions, for which neither experiment nor theory is available, is predicted.

Keywords

References

  1. Hess, B. A.; Marian, C. M.; Peyerimhoff, S. D. In Modern Structure Theory, Part I; Ng, C.-Y.; Yarkony, D. R., Eds.; Advanced Series in Physical Chemistry, World Scientific: Singapore, 1995; Vol. 2, pp. 152-278
  2. Marian, C. M. Rev. Comput. Chem. 2001, 17, 99 https://doi.org/10.1002/0471224413.ch3
  3. Teichteil, C.; Pelissier, M.; Spiegelman, F. Chem. Phys. 1983, 81,283. https://doi.org/10.1016/0301-0104(83)85322-1
  4. Phys. Rev. A v.64 Fedorov, D. G.;Finley, J. P. https://doi.org/10.1103/PhysRevA.64.042502
  5. Fedorov, D. G.; Finley, J. P. Phys. Rev. A 2001, 64, 042502. https://doi.org/10.1103/PhysRevA.64.042502
  6. Sun, H.; Freed, K. F. J. Chem. Phys. 2003, in press.
  7. Freed, K. F. Acc. Chem. Res. 1983, 16, 137 https://doi.org/10.1021/ar00088a004
  8. Sun, H.; Freed, K. F. J. Chem. Phys. 1988, 88, 2659. https://doi.org/10.1063/1.453993
  9. Chaudhuri, R. K.; Majumder, S.; Freed, K. F. J. Chem. Phys.2000, 112, 9301. https://doi.org/10.1063/1.481551
  10. Chaudhuri, R. K.; Stevens, J. E.; Freed, K. F. J. Chem. Phys. 1998,109, 9685. https://doi.org/10.1063/1.477638
  11. Sun, H.; Sheppard, M. G.; Freed, K. F. J. Chem. Phys. 1981, 74,6842. https://doi.org/10.1063/1.441092
  12. Chaudhuri, R. K.; Freed, K. F. J. Chem. Phys. 1997, 107, 6699. https://doi.org/10.1063/1.474913
  13. Lee, S., Private communication.
  14. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen,K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J.Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  15. Dunning, Jr., T. H. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
  16. Woon, D. E.; Dunning, Jr., T. H. J. Chem. Phys. 1993, 98,1358. https://doi.org/10.1063/1.464303
  17. Kendall, R. A.; Dunning, Jr., T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6769.
  18. Koseki, S.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. 1992,96, 10768. https://doi.org/10.1021/j100205a033
  19. Koseki, S.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A1998, 102, 10430. https://doi.org/10.1021/jp983453n
  20. Koseki, S.; Fedorov, D. G.; Schmidt, M. W.; Gordon, M. S. J.Phys. Chem. A 2001, 105, 8262. https://doi.org/10.1021/jp011677r
  21. Koseki, S.; Gordon, M. S.; Schmidt, M. W.; Matsunaga, N. J.Phys. Chem. 1995, 99, 12764. https://doi.org/10.1021/j100034a013
  22. Chaudhuri, R. K.; Mudholkar, A.; Freed, K. F.; Martin, C. H.;Sun, H. J. Chem. Phys. 1997, 106, 9252. https://doi.org/10.1063/1.474026
  23. Chaudhuri, R. K.; Finley, J. P.; Freed, K. F. J. Chem. Phys. 1997,106, 4067. https://doi.org/10.1063/1.473188
  24. Finley, J. P.; Chaudhuri, R. K.; Freed, K. F. Phys. Rev. A 1996, 54,343. https://doi.org/10.1103/PhysRevA.54.343
  25. Finley, J. P.; Chaudhuri, R. K.; Freed, K. F. J. Chem. Phys. 1995,103, 4990. https://doi.org/10.1063/1.470586
  26. Kalemos, A.; Mavridis, A.; Metropoulos, A. J. Chem. Phys. 1999,116, 6529. https://doi.org/10.1063/1.1461817
  27. Sannigrahi, A. B.; Buenker, R. J.; Hirsch, G.; Gu, J. Chem. Phys.Lett. 1995, 237, 204. https://doi.org/10.1016/0009-2614(95)00307-P
  28. Park, J. K.; Sun, H. Bull. Korean Chem. Soc. 1992, 13, 435. https://doi.org/10.1007/BF02705990
  29. Park, J. K.; Sun, H. J. Chem. Phys. 1993, 99, 1846.
  30. Larsson, M. J. Chem. Phys. 1987, 86, 5018. https://doi.org/10.1063/1.452673
  31. Huber, K. P.; Herzberg, G. Molecular Spectra and MolecularStructure. Constants of Diatomic Molecules; Van NostrandReinhold: New York, 1979; Vol. 4.
  32. Ram, R. S.; Englemen, Jr., R.; Bernath, P. F. J. Mol. Spectrosc.1998, 190, 341. https://doi.org/10.1006/jmsp.1998.7582
  33. Moore, C. E. Atomic Energy Levels; Nat. Stand. Data Ser., Nat.Bur. Stand. 35/Vol. I and II; 1958.
  34. Baeck, K. K.; Lee, Y. S. J. Chem. Phys. 1994, 100, 2888. https://doi.org/10.1063/1.467229
  35. Ryu, S.; Baeck, K. K.; Han, Y.-K.; Lee, Y. S. Bull. Korean Chem. Soc. 2001, 22, 969.
  36. Kleinschmidt, M.; Fleig, T.; Marian, C. M. J. Mol. Spectrosc. 2002, 211, 179. https://doi.org/10.1006/jmsp.2001.8502

Cited by

  1. ExoMol line lists XXIV: a new hot line list for silicon monohydride, SiH vol.473, pp.4, 2017, https://doi.org/10.1093/mnras/stx2738
  2. The splitting of low-lying or low excited states for hydride molecules (cations) of the third period under spin-orbit coupling vol.17, pp.6, 2008, https://doi.org/10.1088/1674-1056/17/6/018
  3. Ab initio study of spin-orbit interaction in the ground electronic states of XH (X=C, Si, Ge and Sn) molecules vol.870, pp.1, 2008, https://doi.org/10.1016/j.theochem.2008.09.002