DOI QR코드

DOI QR Code

Spin-Orbit Density Functional Theory Calculations for TlAt with Relativistic Effective Core Potentials

  • Choi, Yoon-Jeong (Department of Chemistry and School of Molecular Science (BK21), KAIST) ;
  • Bae, Cheol-Beom (Department of Chemistry and School of Molecular Science (BK21), KAIST) ;
  • Lee, Yoon-Sup (Department of Chemistry and School of Molecular Science (BK21), KAIST) ;
  • Lee, Sang-San (Supercomputing Center, KISTI)
  • Published : 2003.06.20

Abstract

Bond lengths, harmonic vibrational frequencies and dissociation energies of TlAt are calculated at ab initio molecular orbital and density functional theory using effective spin-orbit operator and relativistic effective core potentials. Spin-orbit effects estimated from density functional theory are in good agreement with those from ab initio calculations, implying that density functional theory with effective core potentials can be an efficient and reliable methods for spin-orbit interactions. The estimated $R_e$, $ω_e$ and $D_e$ values are 2.937 ${\AA}$, 120 $cm^{-1}$, 1.96 eV for TlAt. Spin-orbit effects generally cause the bond contraction in Group 13 elements and the bond elongation in the Group 17 elements, and spin-orbit effects on Re of TlAt are almost cancelled out. The spinorbit effects on $D_e$ of TlAt are roughly the sum of spin-orbit effects on $D_e$ of the corresponding element hydrides. Electron correlations and spin-orbit effects are almost additive in the TlAt molecule.

Keywords

References

  1. High Performance Computational Chemistry Group, NWChem,A Computational Chemistry Package for Parallel Computers,Version 4.1; Pacific Northwest National Laboratory: Richland,Washington 99352, USA, 2002.
  2. Han, Y.-K.; Bae, C.; Lee, Y. S. J. Chem. Phys. 1999, 110, 8969. https://doi.org/10.1063/1.478814
  3. Han, Y.-K.; Son, S.-K.; Choi, Y. J.; Lee, Y. S. J. Phys. Chem. 1999, 103, 9109. https://doi.org/10.1021/jp9917953
  4. Faegri, K.; Saue, T. J. Chem. Phys. 2001, 115, 2456. https://doi.org/10.1063/1.1385366
  5. Christiansen, P. A. private communication.
  6. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  7. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 110, 6158. https://doi.org/10.1063/1.478522
  8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.;Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.;Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin,R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.G.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian98 (Rev. A.10);Gaussian, Inc.: Pittsburgh, PA, 2001.
  9. Amos, R. D.; Bernhardsson, A.; Berning, A.; Celani, P.; Cooper,D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.;Hetzer, G.; Knowles, P. J.; Korona, T.; Lindh, R.; Lloyd, A. W.;McNicholas, S. J.; Manby, F. R.; Meyer, W.; Mura, M. E.;Nicklass, A.; Palmieri, P.; Pitzer, R.; Rauhut, G.; Schütz, M.;Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson,T.; Werner, H.-J.; MOLPRO 2000.1; University of Birmingham:Birmingham, UK, 1999.
  10. Schwerdtfeger, P.; Ischtwan, J. J. Comp. Chem. 1993, 14, 913. https://doi.org/10.1002/jcc.540140806
  11. Huber, H. P.; Herzberg, G. In Molecular Spectra and MolecularStructure IV. Constants of Diatomic Molecules; Van NostrandReinhold: New York, U.S.A., 1979.
  12. Han, Y.-K.; Bae, C.; Son, S.-K.; Lee, Y. S. J. Chem. Phys. 2000, 112, 2684. https://doi.org/10.1063/1.480842

Cited by

  1. Spin–orbit density functional theory calculations for IX (X=F, Cl, Br and I) molecules vol.103, pp.15-16, 2005, https://doi.org/10.1080/00268970500130936
  2. Assessment of PBE0 Calculation of C-NO2 Bond Dissociation Energies for Nitroaromatic System vol.915-916, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.915-916.675
  3. The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method vol.25, pp.11, 2003, https://doi.org/10.5012/bkcs.2004.25.11.1657