DOI QR코드

DOI QR Code

Estimation for Retention Factor of Isoflavones in Physico-Chemical Properties

  • Lee, Seung-Ki (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University)
  • Published : 2003.09.20

Abstract

The estimation of retention factors by correlation equations with physico-chmical properties maybe helpful in chromatographic work. The physico-chemical properties were water solubility (S), hydrophobicity (P), total energy ($E_t$), connectivity index 1 ($^1{\chi}$), hydrophilic-lipophlic balance (x) and hydrophilic surface area (h) of isoflavones. The retention factors were experimentally measured by RP-HPLC. Especially, the empirical regulations of water solubility and hydrophobicity were expressed in a linear form. The equation between retention factors and various physico-chemical properties of isoflavones was suggested as $k = a_0 + a_1\;log S + a_2log\;P^Q + a_3(E_t) + a_4(^1{\chi}) + a_5(x) + a_6(h)$, and the correlation coefficients estimated were relatively higher than 0.95. The empirical equations might be successfully used for a prediction of the various chromatographic characteristics of substances, with a similar chemical structure.

Keywords

References

  1. Estrada, E.; Gutierrez, Y. J. Chromatogr. A 1999, 858, 187. https://doi.org/10.1016/S0021-9673(99)00808-0
  2. Tatjana, D. S.; Marijana, A.; Acanski, P. J. J. Chromatogr. B 2001,766, 67.
  3. Tham, D. M.; Gardner, C. D.; Haskell, W. L. J. Clin. Endocrinol.Metab. 1998, 83, 2223. https://doi.org/10.1210/jc.83.7.2223
  4. Setchell, K. D. R.; Cassidy, A. J. Nutr. 1999, 129, 758S.
  5. Bingham, S. A.; Atkinson, C.; Liggins, J.; Bluck, L.; Coward, A.Br. J. Nutr. 1998, 79, 393. https://doi.org/10.1079/BJN19980068
  6. Wang, H. J.; Murphy, P. A. J. Agric. Food Chem. 1996, 44, 2377. https://doi.org/10.1021/jf950535p
  7. Coward, L.; Smith, M.; Kirk, M.; Barnes, S. Am. J. Clin. Nutr.1998, 68 (Suppl.) 1486S.
  8. Hanch, K. Chem.-Pharm. J. 1980, 14, 15.
  9. Wang, Y. H.; Wong, P. K. Chemosphere 2003, 50, 499. https://doi.org/10.1016/S0045-6535(02)00491-5
  10. Golovanov, I. B.; Tsygankova, I. G. Quant. Struct.-Act. Relat.2000, 19, 554. https://doi.org/10.1002/1521-3838(200012)19:6<554::AID-QSAR554>3.0.CO;2-A
  11. ChemSW Molecular Modeling Pro for Windows; CA 94585-4019, USA, 1991.
  12. Dewar, M. J. S.; Helay, E. J. J. Comput. Chem. 1983, 4, 158. https://doi.org/10.1002/jcc.540040207
  13. Dewar, M. J. S.; Helay, E. J.; Stewart, J. J. Comput. Chem. 1988,5, 358. https://doi.org/10.1002/jcc.540050413
  14. Hansch, C.; Leo, A. Substituent Constants for CorrelationAnalysis in Chemistry and Biology; Wiley: New York, 1979.
  15. Advances in Chromatography; Kaliszan, R.; Brown, P. R.;Grushka, E., Eds.; Marcel Dekker: New York, 1993; Chapter 4, p147.
  16. Ghose, A. K.; Crippen, G. M. J. Chem. Inf. Comput. Sci. 1987, 27,21. https://doi.org/10.1021/ci00053a005
  17. Bodor, N.; Buchwald, P. J. Phys. Chem. B 1997, 101, 3404. https://doi.org/10.1021/jp9638503
  18. Kiez, L. B.; Hall, L. H. Molecular Connectivity in Chemistry andDrug Research; Academic Press: New York, U. S. A., 1976; p177.
  19. Randic, M. J. Am. Chem. Soc. 1975, 97, 6609. https://doi.org/10.1021/ja00856a001
  20. Adamson, A. W. The Physical Chemistry of Surface; Wiley: NewYork, 1976.
  21. Korea Food Research Institute, Ref. No. − S00804-001.
  22. Onuchak, L. A.; Minakhmetov, R. A.; Kurkin, V. A. Russian J.Phys. Chem. 2002, 76, 1532.

Cited by

  1. Separation of Soybean Isoflavone Aglycone Homologues by Ionic Liquid-Based Extraction vol.60, pp.13, 2012, https://doi.org/10.1021/jf3003009
  2. Rapid-resolution HPLC with spectrometric detection for the determination and identification of isoflavones in soy preparations and plant extracts vol.389, pp.7-8, 2007, https://doi.org/10.1007/s00216-007-1606-3
  3. Current trends in isolation, separation, determination and identification of isoflavones: A review vol.31, pp.11, 2008, https://doi.org/10.1002/jssc.200700569
  4. Effects of extraction temperature, ionic strength and contact time on efficiency of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micellar backward extraction of soy protein and isoflavones from soy flour vol.88, pp.4, 2008, https://doi.org/10.1002/jsfa.3121
  5. Normal- and Reversed-Phase Behaviour of 16,17-Secoestrone Derivatives on Cyanopropyl-Bonded Silica Gel vol.70, pp.11-12, 2009, https://doi.org/10.1365/s10337-009-1367-6
  6. Effects of Surfactant and Salt Species in Reverse Micellar Forward Extraction Efficiency of Isoflavones with Enriched Protein from Soy Flour vol.162, pp.7, 2010, https://doi.org/10.1007/s12010-010-8984-2
  7. Linear Correlation Equation for Retention Factor of Nucleic Acid Using QSPR vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.629
  8. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases vol.1195, pp.1, 2003, https://doi.org/10.1016/j.chroma.2008.04.069