DOI QR코드

DOI QR Code

Highly Selective and Simple Zero and First Order Derivative Spectrophotometric Determination of Palladium by Using α-Benzilmonoxime in Triton X-100 Micellar Solution

  • Published : 2003.12.20

Abstract

The reaction of ${\alpha}$-Benzilmonoxime with palladium(II) produces a green complex in triton X-100 micellar media. Palladium has been determined using zero and first derivative spectrophotometric methods. The absorbances of Pd(II)- ${\alpha}$--benzilmonoxime complex at 441.8 and 677.0 nm in 0.10 M perchloric acid solution were monitored and linear working ranges of 0.3-12.0 and 0.7-20 ${\mu}$g mL$^{-1}$ with detection limits of 0.07 and 0.10 ${\mu}$g $mL^-1$ were obtained, respectively. Also, recoveries in the range of 92.8 to 100.1% and relative standard deviations in the range of 0.4 to 7.1% were obtained. First derivative spectrophotometry has also been applied for palladium determination under the optimum condition. The linear dynamic range of 0.2-24.0 ${\mu}$g $mL^{-1}$ palladium with relative standard deviations of 0.6-6.9% and recoveries in the range of 94.9-102.5% has been obtained by first derivative spectrophotometry. The method shows high selectivity because of the high concentration of acid used, which prevents formation of complexes of ${\alpha}$--benzilmonoxime with the other cations. The palladium complex formed was stable at least one day. The method was successfully applied to the determination of palladium in some synthetic palladium alloys and palladium-charcoal powder.

Keywords

References

  1. Pyrzynska, K. Talanta 1998, 47, 841. https://doi.org/10.1016/S0039-9140(98)00158-1
  2. Caroli, S.; Alimonti, A.; Petrucci, F.; Bocca, B.; Krachler, M.; Forastiere, F.; Sacerdote, M. T.; Mallone, S. Spectrochimica Acta Part B 2001, 56, 1241. https://doi.org/10.1016/S0584-8547(01)00203-8
  3. Watanabe, K.; Hojiatie, M.; Nakamura, I.; Oaki, I. Anal. Chim. Acta 1989, 218, 111. https://doi.org/10.1016/S0003-2670(00)80288-3
  4. Gholivand, M. B.; Nozari, N. Talanta 2000, 52, 1055. https://doi.org/10.1016/S0039-9140(00)00476-8
  5. More, P. S.; Sawant, A. D. Anal. Lett. 1994, 27, 1737. https://doi.org/10.1080/00032719408007432
  6. Gordeeva, V. P.; Kochelaeva, G. A.; Tsizin, G. I.; Ivanov, V. M.; Zolotov, Y. A. J. Anal. Chem. 2002, 57, 688. https://doi.org/10.1023/A:1016817708070
  7. Igarashi, S.; Ide, N.; Takagai, Y. Anal. Chim. Acta 2000, 424, 263. https://doi.org/10.1016/S0003-2670(00)01082-5
  8. Sindhvani, S. K.; Shravah, K.; Sharma, R. K. Analyst 1987, 112, 175. https://doi.org/10.1039/an9871200175
  9. Puri, B. K.; Balani, S. Talanta 1992, 39, 815. https://doi.org/10.1016/0039-9140(92)80101-I
  10. Taher, M. A. Anal. Lett. 1998, 31, 2115. https://doi.org/10.1080/00032719808005289
  11. Rollins, O. W.; Oldham, M. M. Anal. Chem. 1971, 43, 262. https://doi.org/10.1021/ac60297a026
  12. Sakuraba, S.; Oguma, K.; Fres, J. Anal. Chem. 1994, 349, 523. https://doi.org/10.1007/BF00323986
  13. Lihong, W.; Fulong, T. Microchem. J. 1996, 53, 349. https://doi.org/10.1006/mchj.1996.0050
  14. Hanna, W. G. Talanta 1999, 50, 809. https://doi.org/10.1016/S0039-9140(99)00116-2
  15. Mori, I.; Kawakatsu, T.; Fujita, Y.; Matsuo, T. Talanta 1999, 48, 1039. https://doi.org/10.1016/S0039-9140(98)00309-9
  16. Ma, D.; Cui, F.; Xia, D.; Wang, Y. Anal. Lett. 2002, 35, 413. https://doi.org/10.1081/AL-120002539
  17. Elsayed, A. Y.; Rahem, M. A.; Omran, A. A. Anal. Sci. 1998, 14, 577. https://doi.org/10.2116/analsci.14.577
  18. Elsayed, A. Y.; Abushanab, F. A. Mikrochim. Acta 1998, 129, 225. https://doi.org/10.1007/BF01244745
  19. Gang, S.; Xingyuo, C.; Yunkun, Z.; Mancang, L.; Zhide, H. Anal. Chim. Acta 2000, 420, 123. https://doi.org/10.1016/S0003-2670(00)00977-6
  20. Anthemidis, A. N.; Themelis, D. G.; Stratis, J. A. Anal. Chim. Acta 2000, 412, 161. https://doi.org/10.1016/S0003-2670(00)00751-0
  21. Anthemidis, A. N.; Themelis, D. G.; Stratis, J. A. Talanta 2001, 54, 37. https://doi.org/10.1016/S0039-9140(00)00620-2
  22. Pourreza, N.; Rastegarzadeh, S. Anal. Chim. Acta 2001, 437, 273. https://doi.org/10.1016/S0003-2670(01)00988-6
  23. Paradkar, R. P.; Williams, R. R. Anal. Chem. 1994, 66, 2752. https://doi.org/10.1021/ac00089a024
  24. Gotlieb, I.; Bozzelli, J. W.; Gotlieb, E. Sep. Sci. Technol. 1993, 28, 793. https://doi.org/10.1080/01496399308019521
  25. Deitsch, J. J.; Smith, J. A. Environ. Sci. Technol. 1995, 29, 1069. https://doi.org/10.1021/es00004a029
  26. Safavi, A.; Abdollahi, H. Microchem. J. 2001, 69, 69. https://doi.org/10.1016/S0026-265X(01)00082-0
  27. Andres, M. P. S.; Marina, M. L.; Vera, S. Analyst 1995, 120, 225. https://doi.org/10.1039/an9952000225
  28. Vaidya, B.; Porter, M. D. Anal. Chem. 1997, 69, 2688. https://doi.org/10.1021/ac970157i
  29. Hayashi, K.; Sasaki, Y.; Tagashira, S.; Kosaka, E. Anal. Chem. 1986, 58, 1444. https://doi.org/10.1021/ac00298a038
  30. Tagashira, S.; Onoue, K.; Murakami, Y.; Sasaki, Y. Bull. Chem. Soc. Jpn. 1992, 65, 286. https://doi.org/10.1246/bcsj.65.286
  31. Ensafi, A. A.; Eskandari, H. Microchem. J. 1999, 63, 266. https://doi.org/10.1006/mchj.1999.1790
  32. Ensafi, A. A.; Abbasi, S. Microchem. J. 2000, 64, 195. https://doi.org/10.1016/S0026-265X(00)00004-7
  33. Eskandari, H.; Ghaziaskar, H. S.; Ensafi, A. A. Anal. Sci. 2001, 17, 327. https://doi.org/10.2116/analsci.17.327
  34. Eskandari, H.; Ghaziaskar, H. S.; Ensafi, A. A. Anal. Lett. 2001, 34, 2535. https://doi.org/10.1081/AL-100107534
  35. Bassett, J.; Denney, R. C.; Jeffery, G. H.; Mendham, J. Textbook of Quantitative Inorganic Analysis, 5th Ed.; Longman Group Limited: New York, U. S. A., 1989; p 474.
  36. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchall, A. R. Vogel's Textbook of Practical Organic Chemistry, 4th Ed.; Longman Group Limited: London, U. K., 1978; p 811.
  37. Choi, H. S.; Lee, S. K. Bull. Korean Chem. Soc. 2001, 22, 463.
  38. Lyman, T. Metals Handbook, 8th Ed.; American Society for Metals: New York, U. S. A., 1966; Vol. 1, pp 814-1195.

Cited by

  1. Modified analcime loaded with zincon as a useful material for the separation and preconcentration of trace palladium and its determination by third-derivative spectrophotometry vol.62, pp.11, 2007, https://doi.org/10.1134/S1061934807110044
  2. Spectrophotometric and AAS Determination of Trace Amounts of Cobalt after Preconcentration by Using α-Benzilmonoxime-Microcrystalline Naphthalene vol.20, pp.8, 2003, https://doi.org/10.2116/analsci.20.1227
  3. Fluorimetric Determination of Dichloroacetamide by RPLC with Postcolumn Detection vol.25, pp.6, 2003, https://doi.org/10.5012/bkcs.2004.25.6.900
  4. Highly Selective Derivative Spectrophotometry for Determination of Nickel Using 1-(2-Pyridylazo)-2-naphthol in Tween 80 Micellar Solutions vol.25, pp.8, 2004, https://doi.org/10.5012/bkcs.2004.25.8.1137
  5. Transformation of metals and metal ions by hydrogenases from phototrophic bacteria vol.184, pp.5, 2003, https://doi.org/10.1007/s00203-005-0040-1
  6. Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells vol.83, pp.1, 2003, https://doi.org/10.1007/s00339-005-3449-0