DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Isothiocyanophosphate in Acetonitrile

  • Published : 2003.08.20

Abstract

The kinetics and mechanism of the pyridinolysis $(XC_5H_4N)$ of Y-aryl phenyl isothiocyanophosphates (1;$(YC_6H_4O)\;(C_6H_5O)$P(=O)NCS) are investigated in acetonitrile at 55.0 ℃. The Hammett plots for substituent (Y) variations in the substrate (log k₂ vs σY) exhibit a convex upward biphasic type with breaks at Y = H. For electron-donating Y groups the Hammett coefficients, ρY, are positive and cross-interaction constant ρXY is negative, while those for electron-withdrawing Y groups ρY values are negative with a positive ρXY. These results are interpreted to indicate mechanistic change at the breakpoint (σY = 0) from a concerted to a stepwise mechanism with rate-limiting expulsion of the $^-NCS$ group from a trigonal bipyramidal pentacoordinated (TBP-5C) intermediate. Biphasic plots of log k₂ vs σX or $pK_a$(X) with steeper slopes for the more basic nucleophiles are obtained suggesting an equatorial nucleophilic attack in contrast to an apical attack for the less basic nucleophiles with smaller magnitude of ρX or βx.

Keywords

References

  1. Page, M.; Walliams, A. Organic and Bio-Organic Mechanisms;Longman: Harlow, 1997; Chapter 7-8.
  2. Williams, A. ConcertedOrganic and Bio-Organic Mechanisms; CRC Press: Boca Raton,2000; Chapter 6.
  3. Hudson, R. F. Structure and Mechanism inOrganophosphorus Chemistry; Academic Press: New York, 1965.
  4. Admiral, S. J.; Schneider, B.; Meyer, P.; Janin, J.; Veron, M.;Deville-Bonne, D.; Herschlag, D. Biochemistry 1999, 38, 4701. https://doi.org/10.1021/bi9827565
  5. Mol, C. D.; Izumi, T.; Mitra, S.; Tainer, J. A. Nature 2000, 403,451. https://doi.org/10.1038/35000249
  6. Hosfield, D. J.; Guan, Y.; Haas, B. J.; Cunningham, R. P.;Tainer, J. A. Cell 1999, 98, 397. https://doi.org/10.1016/S0092-8674(00)81968-6
  7. Mol, C. D.; Hosfield, D. J.;Tainer, J. A. Mutat. Res. 2000, 460, 211. https://doi.org/10.1016/S0921-8777(00)00028-8
  8. Chapados, B. R.;Chai, Q.; Hosfield, D. J.; Qiu, J.; Shen, B.; Tainer, J. A. J. Mol.Biol. 2001, 307, 541. https://doi.org/10.1006/jmbi.2001.4494
  9. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591. https://doi.org/10.1021/ja00336a046
  10. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106,7597. https://doi.org/10.1021/ja00336a047
  11. Bourne, N.; Chrystiuk, E.; Davids, A. M.; Williams, A.J. Am. Chem. Soc. 1988, 110, 890. https://doi.org/10.1021/ja00211a032
  12. Ba-Saif, S. A.; Waring, M.A.; Williams, A. J. Am. Chem. Soc. 1990, 112, 8115. https://doi.org/10.1021/ja00178a040
  13. Cho, H.;Krishnaraj, R.; Kiats, E.; Bannwarth, W.; Walsh, C. T.; Anderson,K. S. J. Am. Chem. Soc. 1992, 114, 7296. https://doi.org/10.1021/ja00044a052
  14. Kirby, A. J.;Varrogils, A. G. J. Am. Chem. Soc. 1967, 89, 415. https://doi.org/10.1021/ja00978a044
  15. Friedman, J.M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110,1268. https://doi.org/10.1021/ja00212a040
  16. Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63,6680. https://doi.org/10.1021/jo981160k
  17. Popov, A. F.; Sadovskii, Y. S.; Solomoichenko, T. N.;Savelova, V. A.; Lobanova, O. V.; Piskunova, Z. P. Russ. J. Org.Chem. 2000, 36, 715.
  18. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 21999, 765.
  19. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem.2000, 65, 15.
  20. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem.Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  21. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002,67, 2215. https://doi.org/10.1021/jo0162742
  22. Mo, B.; Li, J.; Liang, S. Anal. Biochem. 1997, 252, 169. https://doi.org/10.1006/abio.1997.2278
  23. Bailey, J. M. ; Nikfarjam, F.; Shenoy, J. E. Protein Sci. 1992, 1,1622. https://doi.org/10.1002/pro.5560011210
  24. Bernat, J.; Kristian, P.; Guspanova, J.; Imrich, J.; Busova, T.Collec. Czech. Chem. Comm. 1997, 62, 1491. https://doi.org/10.1135/cccc19971491
  25. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  26. Lee, I. Adv. Phys.Org. Chem. 1992, 27, 57.
  27. Lee, I.; Lee, H. W. Collec. Czech.Chem. Comm. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  28. Isaacs, N. S. Physical OrganicChemistry, 2nd ed.; Longman: Harlow, 1995; p 186.
  29. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y.B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  30. Coetzee, J. F. Prog.Phys. Org. Chem. 1965, 4, 45.
  31. Spillane, W. J.; Hogan, G.;McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 21996, 2099.
  32. Ritchie, C. D. Solute Solvent Interactions; Marcel-Dekker: New York, 1969; p 228.
  33. Koh, H. J.; Han, K. L.; Lee,H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  34. Johnson, C. D. The Hammett Equation; University Press:Cambridge, 1973; Chapter 2.
  35. Ruff, F.; Csizmadia, I. G.Organic Reactions. Equilibria, Kinetics and Mechanism; Elsevier:Amsterdam, 1994; Chapter 7.
  36. Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc.,Perkin Trans. 2 2000, 101.
  37. Oh, H. K.; Yang, J. H.; Lee, H. W.;Lee, I. J. Org. Chem. 2000, 65, 2188. https://doi.org/10.1021/jo991823d
  38. Oh, H. K.; Yang, J. H.;Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391. https://doi.org/10.1021/jo000512w
  39. Oh, H. K.;Kim, T. S.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 22002, 282.
  40. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65,4706. https://doi.org/10.1021/jo000411y
  41. Bond, P. M.; Moodie, R. B. J. Chem. Soc., Perkin Trans. 21976, 679.
  42. Castro, E. A.; Gil, F. J. J. Am. Chem. Soc. 1977, 99,7611. https://doi.org/10.1021/ja00465a032
  43. Satterthwait, A.; Jencks, W. P. J. Am. Chem. Soc. 1974,96, 7018, 7031. https://doi.org/10.1021/ja00829a034
  44. Castro, E. A.; Leandro, L.; Millan, P.; Santos,J. G. J. Org. Chem. 1999, 64, 1953. https://doi.org/10.1021/jo982063u
  45. Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894. https://doi.org/10.1021/ja00409a046
  46. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963,6970. https://doi.org/10.1021/ja00463a032
  47. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org.Chem. 1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  48. Castro, E. A.; Cubillos, M.; Ibanez, F.;Maraga, I.; Santos, J. G. J. Org. Chem. 1993, 58, 5400. https://doi.org/10.1021/jo00072a022
  49. Castro,E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61, 3501. https://doi.org/10.1021/jo951726u
  50. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8479. https://doi.org/10.1021/ja00204a022
  51. Lee, D.; Kim, C. K.; Lee, B.-S.; Lee, I. Bull. Korean Chem.Soc. 1995, 16, 1203.
  52. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C.K.; Kim, C. K.; Lee, H. W.; Lee, B.-S. J. Am. Chem. Soc. 2000,122, 11162. https://doi.org/10.1021/ja001814i
  53. Perozzi, E. F.; Martin, J. C.; Paul, I. C. J. Am. Chem. Soc. 1975,96, 6735. https://doi.org/10.1021/ja00828a032
  54. Ramirez, F. Acc. Chem. Res. 1968, 1, 168. https://doi.org/10.1021/ar50006a002
  55. McDowell, R. S.; Streitwieser, A. J. Am. Chem. Soc. 1985, 107,5849 https://doi.org/10.1021/ja00307a003
  56. Lee, I.; Kim, C. K.; Lee, B.-S.; Ha, T.-K. THEOCHEM1993, 279, 191. https://doi.org/10.1016/0166-1280(93)90066-K
  57. Kim, T.-H.; Huh, C.; Lee, B.-S.; Lee, I. J. Chem. Soc., PerkinTrans. 2 1995, 2257.
  58. Lee, I.; Koh, H. J. New J. Chem. 1996, 20, 131.
  59. Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 21995, 1169.
  60. Oh, H. K.; Shin, C. H.; Lee, I. Bull. Korean Chem.Soc. 1995, 16, 657.
  61. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P.J. Org. Chem. 1993, 58, 459. https://doi.org/10.1021/jo00054a033
  62. Castro, E. A.; Cubillos, M.;Santos, J. G. J. Org. Chem. 2001, 66, 6000. https://doi.org/10.1021/jo0100695
  63. Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R. L.; Bernardi,F. Structural Theory of Organic Chemistry; Springer-Verlag:Berlin, 1977; Part 1.
  64. Glendening, E. D.; Weinhold, F. J. Comput.Chem. 1998, 19, 610. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<610::AID-JCC4>3.0.CO;2-U
  65. Fleming, I. Frontier Orbitals andOrganic Chemical Reactions; Wiley: London, 1976; Chapter 4.
  66. Reed, R. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,899. https://doi.org/10.1021/cr00088a005
  67. Tyrrell, J.; Weinstock, R. B.; Weinhold, F. Int. J. Quant.Chem. 1981, 19, 781. https://doi.org/10.1002/qua.560190509
  68. Lee, I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. https://doi.org/10.1021/jp961145o
  69. Wadsworth, W. S.; Wilde, R. L. J. Org. Chem. 1976, 41, 1264. https://doi.org/10.1021/jo00869a044
  70. Bernat, J.; Kristian, P.; Guspanova, J.; Imrich, J.; Busova, T.Collect. Czech. Chem. Commun. 1997, 62, 1491. https://doi.org/10.1135/cccc19971491
  71. Tomaschewski,G.; Zanke, D. Z. Chem. 1971, 11, 384.
  72. Guggenheim, E. A. Philos. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  3. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  4. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  5. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  6. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  7. Pyridinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3505
  8. Kinetics and mechanism of the anilinolyses of aryl dimethyl, methyl phenyl and diphenyl phosphinates vol.9, pp.3, 2011, https://doi.org/10.1039/C0OB00517G
  9. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  10. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  11. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  12. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  13. Kinetics and Mechanism of the Pyridinolysis of Diethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1042
  14. Kinetics and Mechanism of the Pyridinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1047
  15. Anilinolysis of Diethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1089
  16. Kinetics and Mechanism of Pyridinolyses of Ethyl Methyl and Ethyl Propyl Chlorothiophosphates in Acetonitrile vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3372
  17. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  18. -Ethyl Phenyl Phosphonochloridothioates in Acetonitrile vol.45, pp.5, 2013, https://doi.org/10.1002/kin.20773
  19. Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1016
  20. Kinetics and mechanism of the aminolysis of aryl ethyl chloro and chlorothio phosphates with anilines vol.5, pp.24, 2007, https://doi.org/10.1039/b713167d
  21. Kinetics and mechanism of the anilinolysis of dimethyl and diethyl chloro(thiono)phosphates vol.21, pp.7-8, 2008, https://doi.org/10.1002/poc.1314
  22. Concurrent primary and secondary deuterium kinetic isotope effects in anilinolysis of O-aryl methyl phosphonochloridothioates vol.7, pp.14, 2009, https://doi.org/10.1039/b903148k
  23. Kinetics and mechanism of the aminolysis of dimethyl and methyl phenyl phosphinic chlorides with anilines vol.22, pp.5, 2009, https://doi.org/10.1002/poc.1478
  24. Kinetics and Mechanism of the Pyridinolysis of Diphenyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1797
  25. Kinetics and Mechanism of the Aminolysis of Diphenyl Phosphinic Chloride with Anilines vol.28, pp.6, 2003, https://doi.org/10.5012/bkcs.2007.28.6.936
  26. Anilinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.29, pp.10, 2003, https://doi.org/10.5012/bkcs.2008.29.10.2065
  27. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  28. Pyridinolysis of O,O-Diphenyl S-Phenyl Phosphorothiolates in Acetonitrile vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.851
  29. Pyridinolysis of O-Aryl Phenylphosphonochloridothioates in Acetonitrile vol.29, pp.9, 2003, https://doi.org/10.5012/bkcs.2008.29.9.1769
  30. Kinetics and Mechanism of the Aminolysis of Dimethyl Thiophosphinic Chloride with Anilines vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.975
  31. Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.31, pp.12, 2003, https://doi.org/10.5012/bkcs.2010.31.12.3856
  32. Anilinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.31, pp.5, 2003, https://doi.org/10.5012/bkcs.2010.31.5.1403
  33. Kinetics and mechanism of the pyridinolyses of dimethyl and diethyl chloro(thiono)phosphates in acetonitrile vol.23, pp.11, 2003, https://doi.org/10.1002/poc.1709
  34. Kinetics and mechanism of the pyridinolysis of N‐aryl‐P,P‐diphenyl phosphinic amides in dimethyl sulfoxide vol.24, pp.6, 2011, https://doi.org/10.1002/poc.1788
  35. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2003, https://doi.org/10.5012/bkcs.2011.32.11.3947
  36. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  37. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2003, https://doi.org/10.5012/bkcs.2011.32.12.4304
  38. Kinetics and Mechanism of the Pyridinolysis of Ethylene Phosphorochloridate in Acetonitrile vol.32, pp.12, 2003, https://doi.org/10.5012/bkcs.2011.32.12.4347
  39. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2003, https://doi.org/10.5012/bkcs.2011.32.12.4387
  40. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2003, https://doi.org/10.5012/bkcs.2011.32.12.4403
  41. Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.32, pp.2, 2003, https://doi.org/10.5012/bkcs.2011.32.2.709
  42. Theoretical Study of Phosphoryl Transfer Reactions vol.32, pp.3, 2003, https://doi.org/10.5012/bkcs.2011.32.3.889
  43. Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2003, https://doi.org/10.5012/bkcs.2011.32.6.1997
  44. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2003, https://doi.org/10.5012/bkcs.2011.32.4.1138
  45. Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
  46. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2003, https://doi.org/10.5012/bkcs.2011.32.7.2306
  47. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  48. Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2003, https://doi.org/10.5012/bkcs.2011.32.8.2628
  49. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  50. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2003, https://doi.org/10.5012/bkcs.2011.32.9.3355
  51. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  52. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  53. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2003, https://doi.org/10.5012/bkcs.2012.33.3.1055
  54. Pyridinolysis of Dibutyl Chlorothiophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1085
  55. Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.7, 2003, https://doi.org/10.5012/bkcs.2012.33.7.2260
  56. Anilinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.8, 2003, https://doi.org/10.5012/bkcs.2012.33.8.2769
  57. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Chlorothiophosphate in Acetonitrile vol.33, pp.10, 2003, https://doi.org/10.5012/bkcs.2012.33.10.3203
  58. Pyridinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile vol.33, pp.10, 2003, https://doi.org/10.5012/bkcs.2012.33.10.3437
  59. Pyridinolysis of Dipropyl Chlorophosphate in Acetonitrile vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3441
  60. Kinetics and mechanism of the anilinolysis of aryl phenyl isothiocyanophosphates in acetonitrile vol.9, pp.None, 2003, https://doi.org/10.3762/bjoc.9.68
  61. Kinetics and Mechanism of Pyridinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile vol.35, pp.2, 2014, https://doi.org/10.5012/bkcs.2014.35.2.483