DOI QR코드

DOI QR Code

Theoretical Studies on the Structure and Acidity of Meldrum's Acid and Related Compounds

  • Published : 2003.08.20

Abstract

The structures and gas-phase ionization energies (ΔG°) of Meldrum's acid (I) and related cyclic (II-VI) and acyclic compounds (VII-IX) are investigated theoretically at the MP2/6-31+$G^*$, B3LYP/6-31+$G^*$, B3LYP/6- 311+$G^{**}$, B3LYP/6-311++G(3df,2p) and G3(+)(MP2) levels. Conformations of three neutral cyclic series vary gradually from boat (Meldrum's acid, I), to twisted chair (II) and to chair (III) as the methylene group is substituted for the ether oxygen successively. The preferred boat form of I can be ascribed to the two strong $n_O$ → σ* c-c antiperiplanar vicinal charge transfer interactions and electrostatic attraction between negatively charged C¹ and positively charged C⁴at the opposite end of the boat. All the deprotonated anionic forms have half-chair forms due to the two strong $n_C$ → π* c=0 vicinal charge transfer interactions. The dipole-dipole interaction theory cannot account for the higher acidity of Meldrum's acid (I) than dimedone (III). The origin of the anomalously high acidity of I is the strong increase in the vicinal charge transfer ($n_C$ → π* c=0) and 1,4-attrative electrostatic interactions (C¹↔C⁴) in the ionization (I → $I^-$ + $H^+$). In the acyclic series (VII-IX) the positively charged end atom, C⁴, is absent and the attractive electrostatic stabilization (C¹↔C⁴) is missing in the anionic form so that the acidities are much less than the corresponding cyclic series.

Keywords

References

  1. Meldrum, A. N. J. Chem. Soc. 1908, 93, 598. https://doi.org/10.1039/ct9089300598
  2. Pihlaja, K.; Seilo, M. Acta Chem. Scand. 1968, 22, 3053. https://doi.org/10.3891/acta.chem.scand.22-3053
  3. Pihlaja, K.; Seilo, M. Acta Chem. Scand. 1969, 23, 3003. https://doi.org/10.3891/acta.chem.scand.23-3003
  4. Davidson, D.; Bernhard, S. A. J. Am. Chem. Soc. 1948, 70, 3426. https://doi.org/10.1021/ja01190a060
  5. Pfluger, C. E.; Boyle, P. D. J. Chem. Soc. Perkin Trans. 2 1985,1547.
  6. Arnett, E. M.; Maroldo, S. L.; Shilling, S. L.; Harrelson, J. A. J.Am. Chem. Soc. 1984, 106, 6759. https://doi.org/10.1021/ja00334a049
  7. Arnett, E. M.; Harrelson, J. A. J. Am. Chem. Soc. 1987, 109, 809. https://doi.org/10.1021/ja00237a028
  8. Wang, X.; Houk, K. N. J. Am. Chem. Soc. 1988, 110, 1870. https://doi.org/10.1021/ja00214a032
  9. Wiberg, K. B.; Laidig, K. E. J. Am. Chem. Soc. 1988, 110, 1872. https://doi.org/10.1021/ja00214a033
  10. Byun, K.; Mo, Y.; Gao, J. J. Am. Chem. Soc. 2001, 123, 3974. https://doi.org/10.1021/ja001369r
  11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.b Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres,J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J.A. Gaussian 98, Revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
  12. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. AbInitio Molecular Orbital Theory; Wiley: New York, 1986.
  13. Jensen, F. Introduction to Computational Chemistry; Wiley:Chichester, 1999.
  14. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Redfern, P. C.;Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764. https://doi.org/10.1063/1.477422
  15. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, VU;Pople, J. A. J. Chem. Phys. 1999, 110, 4703. https://doi.org/10.1063/1.478385
  16. Baboul, A. G.;Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys.1999, 110, 7650. https://doi.org/10.1063/1.478676
  17. Curtiss, L. A.; Raghavachari, K. Theor.Chem. Acc. 2002, 108, 61. https://doi.org/10.1007/s00214-002-0355-9
  18. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,899. https://doi.org/10.1021/cr00088a005
  19. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem.Phys. 1985, 83, 735 https://doi.org/10.1063/1.449486
  20. Brunck, T. K.; Weinhold, F. J. Am. Chem.Soc. 1979, 101, 1700. https://doi.org/10.1021/ja00501a009
  21. Lee, I. Int. Rev. Phys. Chem. In press.
  22. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,83, 735. https://doi.org/10.1063/1.449486
  23. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78,4066. https://doi.org/10.1063/1.445134
  24. Liptak, M. D.; Grass, K. C.; Seybold, P. G.; Feldgus, S.; Shields,G. C. J. Am. Chem. Soc. 2002, 124, 6421. https://doi.org/10.1021/ja012474j
  25. Klimovitskii, E. N.; Yuldasheva, L. K.; Arbuzov, B. A. Izv. Akad.Nauk SSSR, Ser. Khim. 1973, 1577.
  26. Ayras, P.; Partanen, A. Finn. Chem. Lett. 1976, 110.
  27. Ayras,P. Acta Chem. Scand. 1976, B30, 957.
  28. Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R.; Bernardi, F.Structural Theory of Organic Chemistry; Springer-Verlag: Berlin,1977.
  29. Perez, G. V.; Perez, A. L. J. Chem. Edu. 2000, 77, 910. https://doi.org/10.1021/ed077p910
  30. Bordwell, F. G. Pure Appl. Chem. 1977, 49, 963. https://doi.org/10.1351/pac197749070963
  31. Evanseck,J. D.; Houk, K. N.; Briggs, J. M.; Jorgensen, W. L. J. Am. Chem.Soc. 1994, 116, 10630. https://doi.org/10.1021/ja00102a032
  32. Wiberg, K. B.; Wong, M. W. J. Am.Chem. Soc. 1993, 115, 1078. https://doi.org/10.1021/ja00056a036
  33. Li, H. G.; Kim, C. K.; Lee, B.-S.; Kim, C. K.; Rhee, S. K.; Lee,I. J. Am. Chem. Soc. 2001, 123, 2326. https://doi.org/10.1021/ja0033584
  34. Kim, C. K.; Li, H. G.;Lee, B.-S.; Kim, C. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67,1953. https://doi.org/10.1021/jo0164047
  35. Lee, I.; Kim, C. K.; Sohn, C. K.; Li, H. G.; Lee, H. W. J.Phys. Chem. A 2002, 106, 1081. https://doi.org/10.1021/jp013690h
  36. Petersson, G. A.; Malik, D. K.; Wilson, W. G.; Ochterski, J.W.; Montgomery, J. A., Jr.; Frisch, M. J. J. Chem. Phys. 1998,109, 10570. https://doi.org/10.1063/1.477794
  37. Lee, I.; Li, H. G.; Kim, C. K.; Lee, B.-S.; Kim, C.K.; Lee, H. W. J. Org. Chem., Submitted.
  38. Karty, J. M.; Janaway, G. A.; Brauman, J. I. J. Am. Chem. Soc.2002, 124, 5213. https://doi.org/10.1021/ja011897i
  39. Raghavachari, K.; Whiteside, R. A.; Pople, J. A.; Schleyer, P. v. R.J. Am. Chem. Soc. 1981, 103, 5649. https://doi.org/10.1021/ja00409a004

Cited by

  1. Kinetics and mechanism of benzylamine additions to ethyl α-acetyl-β-phenylacrylates in acetonitrile vol.2, pp.8, 2004, https://doi.org/10.1039/B401239A
  2. N vol.62, pp.3, 2015, https://doi.org/10.1002/jccs.201400224
  3. Kinetic Spectrophotometric Method for the 1,4-Diionic Organophosphorus Formation in the Presence of Meldrum′s Acid: Stopped-Flow Approach vol.21, pp.11, 2016, https://doi.org/10.3390/molecules21111514
  4. Meldrum's Acid: A Useful Platform in Asymmetric Organocatalysis vol.8, pp.11, 2016, https://doi.org/10.1002/cctc.201600247
  5. Reduction of the shrinkage of thermosets by the cationic curing of mixtures of diglycidyl ether of bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione) vol.44, pp.23, 2006, https://doi.org/10.1002/pola.21776
  6. -dimethylamino) pyridine vol.111, pp.4, 2009, https://doi.org/10.1002/app.29211
  7. Gas-Phase Acidities of Disubstituted Methanes and of Enols of Carboxamides Substituted by Electron-Withdrawing Groups1 vol.69, pp.18, 2003, https://doi.org/10.1021/jo040196b
  8. Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene-3,5-heptadione in Acetonitrile vol.70, pp.8, 2003, https://doi.org/10.1021/jo047832q
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. SOLVENT EFFECTS ON THE KETO-ENOL TAUTOMERIC EQUILIBRIUM OF TETRONIC AND ETHYL ACETOACETATE CARBON ACIDS: A THEORETICAL STUDY vol.9, pp.6, 2010, https://doi.org/10.1142/s0219633610006171
  11. The unprecedented C-alkylation and tandem C-/O-alkylation of phenanthrolinium salts with cyclic 1,3-dicarbonyl compounds vol.67, pp.16, 2003, https://doi.org/10.1016/j.tet.2011.02.063
  12. A theoretical investigation on the nucleophilic behavior of Meldrum’s acid linked to experimental evidences vol.738, pp.None, 2003, https://doi.org/10.1016/j.cplett.2019.136908