DOI QR코드

DOI QR Code

Quaternized Polyamidoamine Dendrimers as Novel Gene Delivery System: Relationship between Degree of Quaternization and Their Influences

  • Lee, Jung-Hoon (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Lim, Yong-Beom (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Choi, Joon-Sig (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Choi, Myung-Un (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Yang, Chul-Hak (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Park, Jong-Sang (School of Chemistry & Molecular Engineering, Seoul National University)
  • Published : 2003.11.20

Abstract

Quaternary ammonium groups were introduced to Starburst polyamidoamine (PAMAM) dendrimers for a gene carrier. These quaternary dendritic carriers exhibited reduced cytotoxicity on 293T cells compared to parent dendrimers examined and their transfection efficiency were similar with parent dendrimers. Quaternization could be a promising tool to improve properties of dendrimers as a gene delivery carrier.

Keywords

References

  1. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.;Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17,177.
  2. Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler,R.; Tomalia, D. A.; Baker, J. R., Jr. Proc. Natl. Acad. Sci. USA1996, 93, 4897. https://doi.org/10.1073/pnas.93.10.4897
  3. Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker,J. J. R. Pharm. Sci. Teck. Today 2000, 3, 232. https://doi.org/10.1016/S1461-5347(00)00273-X
  4. Sideratou, Z.; Tsiourvas, D.; Paleos, C. M. Langmuir 2000, 16,1766. https://doi.org/10.1021/la990829v
  5. Gong, A.; Liu, C.; Chen, Y.; Zhang, X.; Chen, C.; Xi, F. Macromol.Rapid Commun. 1999, 20, 492. https://doi.org/10.1002/(SICI)1521-3927(19990901)20:9<492::AID-MARC492>3.0.CO;2-W
  6. Chen, C. Z.; Beck-Tan, N. C.; Dhurjati, P.; van Dyk, T. K.;LaRossa, R. A.; Cooper, S. L. Biomacromolecules 2000, 1, 473. https://doi.org/10.1021/bm0055495
  7. Nishiyama, N.; Stapert, H. R.; Zhang, G. D.; Takasu, D.; Jiang, D.L.; Nagano, T.; Aida, T.; Kataoka, K. Bioconjug. Chem. 2003, 14,58. https://doi.org/10.1021/bc025597h
  8. Dekie, L.; Toncheva, V.; Dubruel, P.; Schacht, E. H.; Barrett, L.;Seymour, L. W. J. Contr. Release 2000, 65, 187. https://doi.org/10.1016/S0168-3659(99)00235-7
  9. Fischer, D.; Lib, Y.; Ahlemeyerc, B.; Krieglsteinc, J.; Kissel, T.Biomaterials 2003, 24, 1121. https://doi.org/10.1016/S0142-9612(02)00445-3
  10. Kim, S.; Choi, J. S.; Jang, H. S.; Suh, H.; Park, J. S. Bull. KoreanChem. Soc. 2001, 22, 1069.
  11. Choi, J. H.; Choi, J. S.; Suh, H.; Park, J. S. Bull. Korean Chem.Soc. 2001, 22, 46.
  12. Wolfert, M. A.; Dash, P. R.; Nazarova, O.; Oupicky, D.; Seymour,L. W.; Smart, S.; Strohalm, J.; Ulbrich, K. Bioconjug. Chem.1999, 10, 993. https://doi.org/10.1021/bc990025r
  13. Yaroslavov, A. A.; Sukhishvili, S. A.; Obolsky, O. L.; Yaroslavova,E. G.; Kabanov, A. V.; Kabanov, V. A. FEBS Lett. 1996, 384,177. https://doi.org/10.1016/0014-5793(96)00281-5
  14. Jeong, J. H.; Song, S. H.; Lim, D. W.; Lee, H.; Park, T. G. J. Contr.Release 2001, 73, 391. https://doi.org/10.1016/S0168-3659(01)00310-8
  15. Hansen, M. B. J. Immunological Methods 1989, 119, 203. https://doi.org/10.1016/0022-1759(89)90397-9
  16. Brownlie, A.; Uchegbu, I. F.; Schatzlein, A. G. Controlled ReleaseSociety 29th Annual Meeting Proceedings 2002, #105.
  17. Zuber, G.; Dauty, E.; Nothisen, M.; Belguise, P.; Behr, J. P. Adv.Drug Delivery Rev. 2001, 52, 245. https://doi.org/10.1016/S0169-409X(01)00213-7

Cited by

  1. Hydrophobic and membrane permeable polyethylenimine nanoparticles efficiently deliver nucleic acids in vitro and in vivo vol.1, pp.19, 2013, https://doi.org/10.1039/c3tb00481c
  2. Aminoglycoside Antibiotic-Derived Anion-Exchange Microbeads for Plasmid DNA Binding and in Situ DNA Capture vol.6, pp.21, 2014, https://doi.org/10.1021/am503240q
  3. Surface-Engineered Dendrimers in Gene Delivery vol.115, pp.11, 2015, https://doi.org/10.1021/cr500542t
  4. Dendrimers in gene transfection vol.74, pp.10, 2009, https://doi.org/10.1134/S0006297909100022
  5. Synthesis, Characterization, and Electrochemical Behavior of Viologen-Functionalized Poly(Amidoamine) Dendrimers vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.715
  6. Synthesis of Novel Biodegradable Quaternary Amine-based Cross-linked Poly(β-amino ester) and Its Self-assembly/disassembly with Plasmid DNA vol.26, pp.1, 2003, https://doi.org/10.5012/bkcs.2005.26.1.175
  7. Acetylation of PAMAM dendrimers for cellular delivery of siRNA vol.9, pp.None, 2009, https://doi.org/10.1186/1472-6750-9-38
  8. Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene vol.66, pp.47, 2010, https://doi.org/10.1016/j.tet.2010.09.063
  9. Poly(amidoamine) dendrimer complexes as a platform for gene delivery vol.10, pp.12, 2003, https://doi.org/10.1517/17425247.2013.853661
  10. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish vol.9, pp.None, 2003, https://doi.org/10.2147/ijn.s60220
  11. Folate receptor‐targeted aminoglycoside‐derived polymers for transgene expression in cancer cells vol.1, pp.2, 2016, https://doi.org/10.1002/btm2.10038
  12. New Insights into the Interactions of a DNA Oligonucleotide with mPEGylated-PAMAM by Circular Dichroism and Solution NMR vol.123, pp.3, 2019, https://doi.org/10.1021/acs.jpcb.8b08517
  13. Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity vol.10, pp.43, 2020, https://doi.org/10.1039/d0ra02574g