DOI QR코드

DOI QR Code

Cure Kinetics and Mechanical Interfacial Characteristics of Zeolite/DGEBA Composites

제올라이트/DGEBA 복합재료의 경화 동력학과 기계적 계면특성

  • Soo-Jin Park (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Young-Mi Kim (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jae-Sup Shin (Department of Chemistry, Chungbuk National University)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김영미 (한국화학연구원 화학소재연구부) ;
  • 신재섭 (충북대학교 화학과)
  • Published : 2003.10.20

Abstract

In this work, the zeolite/diglycidylether of bisphenol A(DGEBA) systems were investigated in terms of the cure kinetics and mechanical interfacial properties of the composites. The 4, 4-diamino diphenyl methane(DDM) was used as a curing agent for epoxy. Two types of zeolite(PZ) were prepared with 15 and 35 wt% KOH treatments(15-BZ and 35-BZ, respectively) for 24 h, and their surface characteristics were studied by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD). Cure kinetics of the composites were examined in the context of differential scanning calorimetry(DSC), and mechanical interfacial properties were investigated in critical stress intensity factor($K_{IC}$) and critical strain energy release rate($G_{IC}$). In the results of XPS and XRD, sodium ion(Na) of zeolite was exchanged for potassium ion(K), resulting from the treatment of KOH. Also, $Si_{2p}/Al{2p}$ composition ratios of the treated zeolite were increased, which could be attributed to the weakening of Al-O bond in framework. Cure activation energy($E_a$) of 15-BZ composites was decreased, whereas KIC and $G_{IC}$ were increased, compared with those of the pure zeolite/DGEBA composites. It was probably accounted that the acidity of zeolite was increased by surface treatments and the cure reaction between zeolite and epoxy was influenced on the increased acidity of zeolite.

본 연구에서는 표면처리된 제올라이트에 따른 제올라이트/DGEBA의 경화 동력학과 기계적 계면특성을 고찰하였다. 경화제는 4, 4''-diamino diphenyl methane(DDM)을 사용하였으며, 제올라이트는(PZ) 15와 35 wt% KOH (15-BZ 그리고 35-BZ)로 표면처리하여 XPS와 XRD로 분석하였다. 경화 동력학은 DSC로 분석하였으며, 시편의 기계적 계면특성은 임계응력 세기인자(critical stress intensity factor, $K_{IC}$)와 임계변형에너지 방출속도(critical strain energy release rate, GIC)를 통하여 알아보았다. XPS와 XRD의 결과로부터, KOH로 표면처리된 제올라이트는 나트륨 (Na)이 칼륨(K)으로 이온교환되었으며, 표면처리로 인한 Al-O의 결합세기의 약화로 $Si_{2p}/Al{2p}$의 값이 증가하였다. 동적 DSC와 기계적 계면특성 결과로부터, 제올라이트/DGEBA 중에서 15-BZ의 경화 활성화에너지($E_a$)는 감소하였으며, $K_{IC}$$G_{IC}$는 증가하였다. 이러한 결과들은 제올라이트의 표면처리에 의해 산성도가 증가하였으며, 이렇게 증가된 산성도가 제올라이트와 에폭시 사이의 경화반응에 영향을 준 것으로 관찰된다.

Keywords

References

  1. Bidstrup, S. U.; Macosko, C. W. J. Polym. Sci., Polym.Phys. Ed. 1990, 28, 691. https://doi.org/10.1002/polb.1990.090280508
  2. Park, S. J.; Seo, M. K.; Lee, J. R. J. Appl. Polym. Sci.2001, 79, 2299. https://doi.org/10.1002/1097-4628(20010321)79:12<2299::AID-APP1037>3.0.CO;2-S
  3. Cheng, K. C.; Chiu, W. Y. Macromolecules 1993, 26,4665. https://doi.org/10.1021/ma00069a038
  4. Lee, H.; Neville, K. Handbook of epoxy resins; McGraw-Hill: New York, 1990.
  5. Park, S. J. Encyclopedia of surface and colloid science:van der Waals interactions at surface; Hubbard, A. T.,Ed; Marcel Dekker: New York, 2002.
  6. Kang, S. K.; Hong, S. I.; Choe, C. R.; Park, M.; Rim,S.; Kim, J. Polymer 2001, 42, 879. https://doi.org/10.1016/S0032-3861(00)00392-X
  7. Garcia-Martinez, J.; Cazorla-Amoros, D.; Linares-Solano,A.; Lin, Y. S. Microporous Mesoporous Mater. 2001,42, 255. https://doi.org/10.1016/S1387-1811(00)00328-0
  8. Cleveland, O. H. Handbook of chemistry and physics;Chemical Rubber Co., 1983.
  9. Vijayalakshmi, R.; Kapoor, S.; Kulshreshtha, S. K. SolidState Sciences 2002, 4, 489. https://doi.org/10.1016/S1293-2558(02)01273-6
  10. Breck, D. W. Zeolite molecular sieve; John Wiley &Sons: New York, 1974.
  11. No, K. T.; Chon, H. Z.; Lee, T. K.; John, M. S. J. Phys.Chem. 1981, 85, 2065. https://doi.org/10.1021/j150614a023
  12. Chau, J. L. H.; Tellez, C.; Yeung, K. L.; Ho, K. J.Membr. Sci. 2000, 164, 257. https://doi.org/10.1016/S0376-7388(99)00214-8
  13. Lee, J. Y.; Shim, M. J.; Kim, S. W. Mater. Chem. Phys.1997, 48, 36. https://doi.org/10.1016/S0254-0584(97)80073-9
  14. Kaushik, V. K.; Vijayalakshmi, R. P.; Choudary, N. V.;Bhat, S. G. T. Microporous Mesoporous Mater. 2002,51, 139. https://doi.org/10.1016/S1387-1811(01)00473-5
  15. Iranmahboob, J.; Hill, D. O.; Toghiani, H. App. Catal.A: Gen. 2002, 231, 99. https://doi.org/10.1016/S0926-860X(01)01011-0
  16. Calson, T. A. Photoelectron and auger spectroscopy;2nd Ed.; Pleum Press: New York, 1978.
  17. Kim, J. T.; Kim, M. C.; Okamato, Y.; Imanaka, T. J.Catal. 1989, 115, 319. https://doi.org/10.1016/0021-9517(89)90036-5
  18. Park, S. J.; Kim, T. J.; Lee, J. R. J. Polym. Sci. B:Polym. Phys. 2000, 38, 2114. https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  19. Kissinger, H. E. J. Res. Nat. Bureau Stand. 1956, 57,2712.
  20. Park, S. J.; Donnet, J. B. J. Colloid Interface Sci. 1998,206, 29. https://doi.org/10.1006/jcis.1998.5672
  21. Park, S. J.; Jang, Y. S. J. Colloid Interface Sci. 2001,237, 91. https://doi.org/10.1006/jcis.2001.7441
  22. Pressly, T. G.; Keskkula, H.; Paul, D. R. Polymer 2001,42, 3043. https://doi.org/10.1016/S0032-3861(00)00696-0