References
- Lown, J. W. Anthracycline and Anthracencedione-based AnticancerAgents; Elsevier: Amsterdam, 1988.
- Rembold, M. W.; Karmer, H. E. A. J. Soc. Dyes Coluor 1980, 96,122.
- Van Benthem, M. H.; Gillispie, G. D. J. Phys. Chem. 1984, 88,2954. https://doi.org/10.1021/j150658a008
- Kim, S.; Chang, D. W.; Park, S. Y.; Kim, K.; Jin, J-. I. Bull.Korean Chem. Soc. 2001, 22, 1407.
- Formosinho, S. J.; Arnaut, L. G. J. Photochem. Photobiol. AChem. 1993, 75, 21. https://doi.org/10.1016/1010-6030(93)80158-6
- Flom, S. R.; Barbara, P. F. J. Phys. Chem. 1985, 89, 4489. https://doi.org/10.1021/j100267a017
- Smulevich, G.; Foggi, P. J. Chem. Phys. 1987, 87, 5657. https://doi.org/10.1063/1.453539
- Marasinghe, P. A. B.; Gillispie, G. D. Chem. Phys. 1989, 136,249. https://doi.org/10.1016/0301-0104(89)80050-3
- Smulevich, G. J. Chem. Phys. 1985, 82, 14. https://doi.org/10.1063/1.448787
- Smulevich, G.; Marzocchi, M. P. Chem. Phys. 1986, 10, 159.
- Smulevich, G.; Foggi, P.; Feis, A.; Marzocchi, M. P. J. Chem.Phys. 1987, 87, 5664. https://doi.org/10.1063/1.453540
- Gillispie, G. D.; Balakrishnan, N.; Vangsness, M. Chem. Phys.1989, 136, 259. https://doi.org/10.1016/0301-0104(89)80051-5
- Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Chem. Phys. 2000,112, 10699. https://doi.org/10.1063/1.481711
- Ameer-Beg, S.; Ormson, S. M.; Brown, R. G.; Matousek, P.;Towrie, M.; Nibbering, E. T. J.; Foggi, P.; Neuwahl, F. V. R. J.Phys. Chem. A 2001, 105, 3709. https://doi.org/10.1021/jp0031101
- Marks, D.; Prosposito, P.; Zhang, H.; Glasbeek, M. Chem. Phys.Lett. 1998, 289, 535. https://doi.org/10.1016/S0009-2614(98)00426-6
- Rini, M.; Kummrow, A.; Dreyer, J.; Nibbering, E. T. J.; Elsaesser,T. Faraday Discuss. 2002, 122, 27.
- Chou, P.-T.; Chen, Y.-C.; Yu, W.-S.; Cheng, Y.-M. Chem. Phys.Lett. 2001, 340, 89. https://doi.org/10.1016/S0009-2614(01)00399-2
- Arzhantsev, S. Y.; Takeuchi, S.; Tahara, T. Chem. Phys. Lett. 2000,330, 83. https://doi.org/10.1016/S0009-2614(00)01087-3
- Wang, H.; Zhang, H.; Abou-Zied, O. K.; Yu, C.; Romesberg, F. E.;Glasbeek, M. Chem. Phys. Lett. 2003, 367, 599. https://doi.org/10.1016/S0009-2614(02)01741-4
- Fujino, T.; Tahara, T. J. Phys. Chem. A 2000, 104, 4203. https://doi.org/10.1021/jp992757m
- Mizutani, Y.; Uesugi, Y.; Kitakawa, T. J. Chem. Phys. 1999, 111,8950. https://doi.org/10.1063/1.480253
- Yeh, A. T.; Shank, C. V.; McCusker, J. K. Science 2000, 289,935. https://doi.org/10.1126/science.289.5481.935
- Toele, P.; Zhang, H.; Glasbeek, M. J. Phys. Chem. A 2002, 106,3651. https://doi.org/10.1021/jp0134446
- Cho, D. W.; Kim, Y. H.; Yoon, M.; Jeoung, S. C.; Kim, D. Chem.Phys. Lett. 1994, 226, 275. https://doi.org/10.1016/0009-2614(94)00742-X
- Kim, Y. H.; Kim, D.; Jeoung, S. C.; Han, J.-Y.; Jang, M.-S.; Shim,H.-K. Chem. Mater. 2001, 13, 2666. https://doi.org/10.1021/cm010146c
- Kim, S.; Chang, D. W.; Park, S. Y.; Jeoung, S. C.; Kim, D.Macromolecules 2002, 35, 6064. https://doi.org/10.1021/ma020319z
- Gollnick, K.; Held, S.; Mrtire, D. O.; Braslavsky, S. E. J.Photochem. Photobiol. A Chem. 1992, 69, 155. https://doi.org/10.1016/1010-6030(92)85273-W
- Inoue, H.; Hida, M.; Nakashima, N.; Yoshihara, K. J. Phys. Chem.1982, 86, 3184. https://doi.org/10.1021/j100213a024
- Chudoba, C.; Riedle, E.; Pfeiffer, M.; Elsaesser, T. Chem. Phys.Lett. 1996, 263, 622. https://doi.org/10.1016/S0009-2614(96)01268-7
Cited by
- ]furan-6,11-dione Derivatives vol.38, pp.16, 2008, https://doi.org/10.1080/00397910802222621
- The role of hydrogen bonding in excited state intramolecular charge transfer vol.14, pp.25, 2012, https://doi.org/10.1039/c2cp23879a
- Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling vol.118, pp.17, 2014, https://doi.org/10.1021/jp501612f
- Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy vol.3, pp.2, 2015, https://doi.org/10.1063/1.4937363
- Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1829
- Tailoring the Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence of 2-(2'-Hydroxyphenyl)benzoxazole Derivatives vol.26, pp.11, 2003, https://doi.org/10.5012/bkcs.2005.26.11.1706
- Excited-state Intramolecular Proton Transfer of 1,5- and 1,8-Dihydroxyanthraquinones Chemically Adsorpted onto SiO2, SiO2-Al2O3, and Al2O vol.28, pp.4, 2007, https://doi.org/10.5012/bkcs.2007.28.4.647
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- Ultrafast Excited State Intramolecular Proton Transfer Dynamics of 1-Hydroxyanthraquinone in Solution vol.34, pp.2, 2003, https://doi.org/10.5012/bkcs.2013.34.2.465
- Excited State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone vol.28, pp.5, 2003, https://doi.org/10.1063/1674-0068/28/cjcp1504078
- Combined TDDFT and AIM Insights into Photoinduced Excited State Intramolecular Proton Transfer (ESIPT) Mechanism in Hydroxyl- and Amino-Anthraquinone Solution vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-14094-5
- Perylene Bisimide and Naphthyl‐Based Molecular Dyads: Hydrogen Bonds Driving Co‐planarization and Anomalous Temperature‐Response Fluorescence vol.132, pp.22, 2003, https://doi.org/10.1002/ange.201914070
- Perylene Bisimide and Naphthyl‐Based Molecular Dyads: Hydrogen Bonds Driving Co‐planarization and Anomalous Temperature‐Response Fluorescence vol.59, pp.22, 2003, https://doi.org/10.1002/anie.201914070