DOI QR코드

DOI QR Code

Time-resolved Anisotropy Study on the Excited-State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone

  • Choi, Jun-Rye (Laser Metrology Laboratory, Korean Research Institute of Standards and Science) ;
  • Jeoung, Sae-Chae (Laser Metrology Laboratory, Korean Research Institute of Standards and Science) ;
  • Cho, Dae-Won (Department of Chemistry, Seonam University)
  • Published : 2003.11.20

Abstract

The photodynamics of excited-state intramolecular proton transfer reaction of 1-hydroxyanthraquinone (1-HAQ) and 1-deuterioanthraquinone was investigated in toluene with time-resolved emission and femtosecond transient transmittance techniques at room temperature. The temporal profiles of transient transmittance of 1-HAQ could be well described with multi-decaying time constants. The ultrafast time constant within ca. 260 fs reflects the dynamics of proton transfer. The decay component of 2 ps is assigned to an additional proton translocation process induced by the intramolecular vibrational relaxation, whereas the decay component of 18 ps is assigned to the vibrational cooling process, while the long component (200 ps) can be explained in terms of the relaxation from excited-state keto-tautomer to its ground state. Time-resolved anisotropy decay dynamics and isotope effects on the photodynamics reveals that the ESIPT from enol-tautomer to keto-one of 1-HAQ is barrierless reaction and coupled to a vibrational relaxation process.

Keywords

References

  1. Lown, J. W. Anthracycline and Anthracencedione-based AnticancerAgents; Elsevier: Amsterdam, 1988.
  2. Rembold, M. W.; Karmer, H. E. A. J. Soc. Dyes Coluor 1980, 96,122.
  3. Van Benthem, M. H.; Gillispie, G. D. J. Phys. Chem. 1984, 88,2954. https://doi.org/10.1021/j150658a008
  4. Kim, S.; Chang, D. W.; Park, S. Y.; Kim, K.; Jin, J-. I. Bull.Korean Chem. Soc. 2001, 22, 1407.
  5. Formosinho, S. J.; Arnaut, L. G. J. Photochem. Photobiol. AChem. 1993, 75, 21. https://doi.org/10.1016/1010-6030(93)80158-6
  6. Flom, S. R.; Barbara, P. F. J. Phys. Chem. 1985, 89, 4489. https://doi.org/10.1021/j100267a017
  7. Smulevich, G.; Foggi, P. J. Chem. Phys. 1987, 87, 5657. https://doi.org/10.1063/1.453539
  8. Marasinghe, P. A. B.; Gillispie, G. D. Chem. Phys. 1989, 136,249. https://doi.org/10.1016/0301-0104(89)80050-3
  9. Smulevich, G. J. Chem. Phys. 1985, 82, 14. https://doi.org/10.1063/1.448787
  10. Smulevich, G.; Marzocchi, M. P. Chem. Phys. 1986, 10, 159.
  11. Smulevich, G.; Foggi, P.; Feis, A.; Marzocchi, M. P. J. Chem.Phys. 1987, 87, 5664. https://doi.org/10.1063/1.453540
  12. Gillispie, G. D.; Balakrishnan, N.; Vangsness, M. Chem. Phys.1989, 136, 259. https://doi.org/10.1016/0301-0104(89)80051-5
  13. Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Chem. Phys. 2000,112, 10699. https://doi.org/10.1063/1.481711
  14. Ameer-Beg, S.; Ormson, S. M.; Brown, R. G.; Matousek, P.;Towrie, M.; Nibbering, E. T. J.; Foggi, P.; Neuwahl, F. V. R. J.Phys. Chem. A 2001, 105, 3709. https://doi.org/10.1021/jp0031101
  15. Marks, D.; Prosposito, P.; Zhang, H.; Glasbeek, M. Chem. Phys.Lett. 1998, 289, 535. https://doi.org/10.1016/S0009-2614(98)00426-6
  16. Rini, M.; Kummrow, A.; Dreyer, J.; Nibbering, E. T. J.; Elsaesser,T. Faraday Discuss. 2002, 122, 27.
  17. Chou, P.-T.; Chen, Y.-C.; Yu, W.-S.; Cheng, Y.-M. Chem. Phys.Lett. 2001, 340, 89. https://doi.org/10.1016/S0009-2614(01)00399-2
  18. Arzhantsev, S. Y.; Takeuchi, S.; Tahara, T. Chem. Phys. Lett. 2000,330, 83. https://doi.org/10.1016/S0009-2614(00)01087-3
  19. Wang, H.; Zhang, H.; Abou-Zied, O. K.; Yu, C.; Romesberg, F. E.;Glasbeek, M. Chem. Phys. Lett. 2003, 367, 599. https://doi.org/10.1016/S0009-2614(02)01741-4
  20. Fujino, T.; Tahara, T. J. Phys. Chem. A 2000, 104, 4203. https://doi.org/10.1021/jp992757m
  21. Mizutani, Y.; Uesugi, Y.; Kitakawa, T. J. Chem. Phys. 1999, 111,8950. https://doi.org/10.1063/1.480253
  22. Yeh, A. T.; Shank, C. V.; McCusker, J. K. Science 2000, 289,935. https://doi.org/10.1126/science.289.5481.935
  23. Toele, P.; Zhang, H.; Glasbeek, M. J. Phys. Chem. A 2002, 106,3651. https://doi.org/10.1021/jp0134446
  24. Cho, D. W.; Kim, Y. H.; Yoon, M.; Jeoung, S. C.; Kim, D. Chem.Phys. Lett. 1994, 226, 275. https://doi.org/10.1016/0009-2614(94)00742-X
  25. Kim, Y. H.; Kim, D.; Jeoung, S. C.; Han, J.-Y.; Jang, M.-S.; Shim,H.-K. Chem. Mater. 2001, 13, 2666. https://doi.org/10.1021/cm010146c
  26. Kim, S.; Chang, D. W.; Park, S. Y.; Jeoung, S. C.; Kim, D.Macromolecules 2002, 35, 6064. https://doi.org/10.1021/ma020319z
  27. Gollnick, K.; Held, S.; Mrtire, D. O.; Braslavsky, S. E. J.Photochem. Photobiol. A Chem. 1992, 69, 155. https://doi.org/10.1016/1010-6030(92)85273-W
  28. Inoue, H.; Hida, M.; Nakashima, N.; Yoshihara, K. J. Phys. Chem.1982, 86, 3184. https://doi.org/10.1021/j100213a024
  29. Chudoba, C.; Riedle, E.; Pfeiffer, M.; Elsaesser, T. Chem. Phys.Lett. 1996, 263, 622. https://doi.org/10.1016/S0009-2614(96)01268-7

Cited by

  1. ]furan-6,11-dione Derivatives vol.38, pp.16, 2008, https://doi.org/10.1080/00397910802222621
  2. The role of hydrogen bonding in excited state intramolecular charge transfer vol.14, pp.25, 2012, https://doi.org/10.1039/c2cp23879a
  3. Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling vol.118, pp.17, 2014, https://doi.org/10.1021/jp501612f
  4. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy vol.3, pp.2, 2015, https://doi.org/10.1063/1.4937363
  5. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1829
  6. Tailoring the Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence of 2-(2'-Hydroxyphenyl)benzoxazole Derivatives vol.26, pp.11, 2003, https://doi.org/10.5012/bkcs.2005.26.11.1706
  7. Excited-state Intramolecular Proton Transfer of 1,5- and 1,8-Dihydroxyanthraquinones Chemically Adsorpted onto SiO2, SiO2-Al2O3, and Al2O vol.28, pp.4, 2007, https://doi.org/10.5012/bkcs.2007.28.4.647
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. Ultrafast Excited State Intramolecular Proton Transfer Dynamics of 1-Hydroxyanthraquinone in Solution vol.34, pp.2, 2003, https://doi.org/10.5012/bkcs.2013.34.2.465
  10. Excited State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone vol.28, pp.5, 2003, https://doi.org/10.1063/1674-0068/28/cjcp1504078
  11. Combined TDDFT and AIM Insights into Photoinduced Excited State Intramolecular Proton Transfer (ESIPT) Mechanism in Hydroxyl- and Amino-Anthraquinone Solution vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-14094-5
  12. Perylene Bisimide and Naphthyl‐Based Molecular Dyads: Hydrogen Bonds Driving Co‐planarization and Anomalous Temperature‐Response Fluorescence vol.132, pp.22, 2003, https://doi.org/10.1002/ange.201914070
  13. Perylene Bisimide and Naphthyl‐Based Molecular Dyads: Hydrogen Bonds Driving Co‐planarization and Anomalous Temperature‐Response Fluorescence vol.59, pp.22, 2003, https://doi.org/10.1002/anie.201914070