DOI QR코드

DOI QR Code

Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms

  • Ree, Jong-Baik (Department of Chemistry Education, Chonnam National University) ;
  • Chang, Kyung-Soon (Department of Chemistry Education, Chonnam National University) ;
  • Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics, Inha University) ;
  • Shin, Hyung-Kyu (Department of Chemistry, University of Nevada)
  • Published : 2003.07.20

Abstract

We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH, particularly in its vibrational motion, in the gas-surface reaction O(g) + H(ad)/Si → OH(g) + Si on the basis of the collision-induced Eley-Rideal mechanism. The reaction probability of the OH formation increases linearly with initial excitation of the HSi vibration. The translational and vibrational motions share most of the energy when the H-Si vibration is initially in the ground state. But, when the initial excitation increases, the vibrational energy of OH rises accordingly, while the energies shared by other motions vary only slightly. The product vibrational excitation is significant and the population distribution is inverted. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations. The amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Keywords

References

  1. Shustorovich, E. Surf. Sci. Rep. 1986, 6, 1. https://doi.org/10.1016/0167-5729(86)90003-8
  2. Christmann, K. Surf. Sci. Rep. 1988, 9, 1. https://doi.org/10.1016/0167-5729(88)90009-X
  3. Weast, R. C., Ed.; CRC Handbook of Chemistry and Physics, 64thEd.; CRC Press: 1983; pp F176-F181.
  4. Hall, R. I.; Cadez, I.; Landau, M.; Pichou, F.; Schermann, C. Phys.Rev. Lett. 1988, 60, 337. https://doi.org/10.1103/PhysRevLett.60.337
  5. Eenshuistra, P. J.; Bonnie, J. H. M.; Lois, J.; Hopman, H. Phys.Rev. Lett. 1988, 60, 341. https://doi.org/10.1103/PhysRevLett.60.341
  6. Kratzer, P.; Brenig, W. Surf. Sci. 1991, 254, 275. https://doi.org/10.1016/0039-6028(91)90659-G
  7. Jackson, B.; Persson, M. Surf. Sci. 1992, 269, 195. https://doi.org/10.1016/0039-6028(92)91249-B
  8. Schermann, C.; Pichou, F.; Landau, M.; Cadez, I.; Hall, R. I. J.Chem. Phys. 1994, 101, 8152. https://doi.org/10.1063/1.468242
  9. Weinberg, W. H. In Dynamics of Gas-Surface Interactions; Rettner,C. T.; Ashfold, M. N. R., Eds.; Royal Society of Chemistry: 1991;pp 171-219.
  10. Shin, H. K. J. Phys. Chem. A 1998, 102, 2372. https://doi.org/10.1021/jp973190h
  11. Koleske, D. D.; Gates, S. M.; Jackson, B. J. Chem. Phys. 1994,101, 3301. https://doi.org/10.1063/1.467577
  12. Kratzer, P. J. Chem. Phys. 1997, 106, 6752. https://doi.org/10.1063/1.473672
  13. Buntin, S. A. J. Chem. Phys. 1998, 108, 1601. https://doi.org/10.1063/1.475530
  14. Kim, Y. H.; Ree, J.; Shin, H. K. J. Chem. Phys. 1998, 108,9821. https://doi.org/10.1063/1.476457
  15. Kim, Y. H.; Ree, J.; Shin, H. K. Chem. Phys. Lett. 1999, 314,1. https://doi.org/10.1016/S0009-2614(99)01124-0
  16. Ree, J.; Chang, K. S.; Moon, K. H.; Kim, Y. H. Bull. Korean Chem.Soc. 2001, 22, 889.
  17. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2002, 353,368. https://doi.org/10.1016/S0009-2614(02)00026-X
  18. Ko, Y.; Ree, J.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc.2002, 23, 1737. https://doi.org/10.5012/bkcs.2002.23.12.1737
  19. Ree, J.; Shin, H. K. J. Chem. Phys. 1999, 111, 10261. https://doi.org/10.1063/1.480375
  20. Adelman, S. A. Adv. Chem. Phys. 1980, 44, 143. https://doi.org/10.1002/9780470142639.ch2
  21. McDowell, H. K. J. Chem. Phys. 2000, 112, 6971. https://doi.org/10.1063/1.481295
  22. Radeke, M. R.; Carter, E. A. Phys. Rev. B 1996, 54, 11803. https://doi.org/10.1103/PhysRevB.54.11803
  23. American Institute of Physics Handbook, 3rd Ed.; Gray, D. E., Ed.;McGraw-Hill: 1972; pp 4-116.
  24. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 1996, 104, 742. https://doi.org/10.1063/1.470799
  25. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; VanNostrand Reinhold: 1979.
  26. Van de Walle, C. G.; Street, R. A. Phys. Rev. B 1995, 51,10615. https://doi.org/10.1103/PhysRevB.51.10615
  27. Kratzer, P.; Hammer, B.; Norskov, J. K. Phys. Rev. B 1995, 51,13432. https://doi.org/10.1103/PhysRevB.51.13432
  28. Jenichen, A.; Johansen, H. Surf. Sci. 1988, 203, 143. https://doi.org/10.1016/0039-6028(88)90200-2
  29. Tully, J. C.; Chabal, Y. J.; Raghavachari, K.; Bowman, J. M.;Lucchese, R. R. Phys. Rev. B 1985, 31, 1184. https://doi.org/10.1103/PhysRevB.31.1184
  30. Huffman, M.; McMillan, P. J. Non-Cryst. Solids 1985, 76,369. https://doi.org/10.1016/0022-3093(85)90011-0
  31. Krol, J. M.; Rabinovich, E. M. J. Non-Cryst. Solids 1986, 82,143. https://doi.org/10.1016/0022-3093(86)90122-5
  32. Gross, A. Surf. Sci. Rep. 1998, 32, 291. https://doi.org/10.1016/S0167-5729(98)00008-9
  33. Yardley, J. T. Introduction to Molecular Energy Transfer;Academic: 1980; Chapter 5.
  34. Shin, H. K. J. Phys. Chem. A 2000, 104, 6699. https://doi.org/10.1021/jp0009094
  35. Kori, M.; Halpern, B. L. Chem. Phys. Lett. 1984, 110, 223. https://doi.org/10.1016/0009-2614(84)85218-5

Cited by

  1. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1822
  2. Trajectory Studies of Methyl Radical Reaction with Iodine Molecule vol.26, pp.9, 2003, https://doi.org/10.5012/bkcs.2005.26.9.1369