• Title/Summary/Keyword: Eley-Rideal

Search Result 17, Processing Time 0.022 seconds

A study on chemical vapor deposition process for the proparation of thin SiC films (실리콘 카바이드 박막 제조를 위한 증착 반응연구)

  • 고준호;우성일
    • Electrical & Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.344-353
    • /
    • 1991
  • 무정형 SiC 박막을 수평형 CVD반응기로부터 SiH$_{4}$ 및 H$_{2}$를 반응기체로 하여 실리콘 웨이퍼위에 증착시켜 제조하였다. 박막 성장 속도는 상압에서 650.deg.C와 850.deg.C범위에서 측정되었다. 반응기체의 유량은 1000sccm으로 고정하였으며 SiH$_{4}$와 CH$_{4}$의 유량을 변화시켰다. 증착 반응속도식으로 표면 반응이 율속단계인 Eley-Rideal 모델과 SiH$_{4}$와 CH$_{4}$의 종도에 m차로 비례하는 두가지 속도식을 가정하였다. 증착시간에 따른 SiC 박막두께의 측정으로부터 얻은 증착 반응 속도로부터 회귀 분석법에 의하여 두가지 반응속도식의 반응속도 상수를 구하였다. 얻어진 반응속도식에 의해서 계산된 값과 실험치를 비교한 결과 0.15차의 반응속도식이 Eley-Rideal반응기구보다 약산 더 잘 맞음을 알 수 있으나 두 모델 다 약간씩 실험결과와 차이가 나고 있다. 이것은 본 실험의 증착 조건의 율속단계가 확산 단계와 표면 반응 단계의 전이영역 즉 본 실험의 증착조건에서 확산속도와 표면 반응속도가 비슷하기 때문으로 생각된다. 또한 Eley-Rideal 반응기구에서 부터 얻어진 SiH$_{4}$ 및 CH$_{4}$의 흡착평형상수 $K_{s}$$K_{c}$ 값을 비교하면 1000K이하에서는 $K_{s}$$K_{c}$ 보다 큰 값을 가지는데 이것은 Gibbs 자유에너지 최소화 방법에서 구한 결과와 일치하였다.

  • PDF

Reaction of Gas-Phase Bromine Atom with Chemisorbed Hydrogen Atoms on a Silicon(100)-(2${\times}$1) Surface

  • Lee, Jong Baek;Jang, Gyeong Sun;Mun, Gyeong Hwan;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.889-896
    • /
    • 2001
  • The reaction of gas-phase atomic bromine with highly covered chemisorbed hydrogen atoms on a silicon surface is studied by use of the classical trajectory approach. It is found that the major reaction is the formation of HBr(g), and it proceeds th rough two modes, that is, direct Eley-Rideal and hot-atom mechanism. The HBr formation reaction takes place on a picosecond time scale with most of the reaction exothermicity depositing in the product vibration and translation. The adsorption of Br(g) on the surface is the second most efficient reaction pathway. The total reaction cross sections are $2.53{\AA}2$ for the HBr formation and $2.32{\AA}2$ for the adsorption of Br(g) at gas temperature 1500 K and surface temperature 300 K.

Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-phase Elemental Mercury ($V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 가스상 원소수은 산화 활성)

  • Hong, Hyun-Jo;Ham, Sung-Won
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.370-378
    • /
    • 2011
  • Catalytic activity of $V_2O_5-WO_3/TiO_2$-based SCR catalyst was examined for the oxidation of gas-phase elemental mercury to oxidized mercury. Mercury species was not detected on the commercial SCR catalyst after the oxidation reaction of elemental mercury, regadless of the presence of HCl acting as oxidant and the reaction conditions. This suggests that elemental mercury oxidation by HCl could occur via a Eley-Rideal mechanism with gas phase or weakly-bound mercury on the surface of $V_2O_5-WO_3/TiO_2$ SCR catalyst. The activity for mercury oxidation was significantly increased with the increase of $V_2O_5$ loading, which indicates that $V_2O_5$ is the active site. However, turnover frequency for mercury oxidation was decreased with the increase of $V_2O_5$ loading, indicating the activity for mercury oxidation was strongly dependent on the surface structure of vanadia species. The activity for oxidation of elemental mercury under SCR condition was much less than that under oxidation condition at the same HCl concentration and reaction temperature.

Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.986-992
    • /
    • 2003
  • We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH, particularly in its vibrational motion, in the gas-surface reaction O(g) + H(ad)/Si → OH(g) + Si on the basis of the collision-induced Eley-Rideal mechanism. The reaction probability of the OH formation increases linearly with initial excitation of the HSi vibration. The translational and vibrational motions share most of the energy when the H-Si vibration is initially in the ground state. But, when the initial excitation increases, the vibrational energy of OH rises accordingly, while the energies shared by other motions vary only slightly. The product vibrational excitation is significant and the population distribution is inverted. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations. The amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Kinetic Analysis of Oxidative Coupling of Methane over Na+/MgO Catalyst (Na+/MgO 촉매상에서 메탄의 Oxidative Coupling 반응의 속도론적 해석)

  • Seo, Ho-Joon;Sunwoo, Chang-Shin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-587
    • /
    • 1994
  • The oxidative coupling of methane was studied kinetically using $Na^+(50wt%)/MgO$ catalyst at 710, 730, 750, 770 and $790^{\circ}C$ in a fixed bed flow reactor at the atmospheric pressure under differential conversion conditions. Through curve fitting, it was found that the Langmuir-Hinshelwood type mechanism was fitted to this reaction rather than Rideal-Redox type or Eley-Rideal type mechanism. Therefore, it was proposed that the $O_2{^-}$ or $O_2{^{2-}}$ species on the surface was related to the production of $CH_3{\cdot}$. The estimated activation energy of $CH_3{\cdot}$ production was about 39.3kcal/mol. Moreover, as the result of curve fitting, the stoichiometric coefficient of $O_2$ for the production of $CH_3{\cdot}$ to produce $CO_x$was approximately 1.5. Accordingly, it could be concluded that the $CH_3O_2{\cdot}*$ was prouduced through the partial oxidation of $CH_3{\cdot}$ with the surface oxygen.

  • PDF

A Kinetic Study of Allylchloride Epoxidation using Titanium Silicalite-1 Catalyst (Titanium Silicalite-1 촉매를 이용한 Allylchloride 에폭시화 반응: 속도론적 고찰)

  • Yang, Seung-Tae;Choi, Jung-Sik;Kwon, Young-Chul;Lee, Sang-Wook;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.142-146
    • /
    • 2008
  • Titanium silicalite-1 catalyst was prepared using a $SiO_2-TiO_2$ xerogel and applied to allylchloride (ALC) epoxidation by $H_2O_2$ as oxidant in a batch reactor. The reaction temperature was varied from 25 to $55^{\circ}C$, and the concentrations of ALC and $H_2O_2$ were changed from 0.2 to 3 M and from 0.2 to 1.5 M, respectively. The kinetic data obtained were applied to the power rate law, Eley-Rideal, and a Langmuir-Hinshelwood model, and power rate law fits the experimental data best. Activation energy was 27.9 kJ/mol, and the reaction orders with respect to $H_2O_2$ and ALC were determined to be 0.41 and 0.52, respectively.

The Deposition of $SnO_2$ Films by Spray Pyrolysis (분무열분해법에 의한 $SnO_2$ 박막의 증착)

  • Kim, Tae-Heui
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 1995
  • The influence of deposition parameters on the deposition of $SnO_2$ thin films by spray pyrolysis has been studied. In the case of spray solution with tile concentration of 0.01M, at low deposition temperature the deposition was controlled by surface reaction and portion controlled by mass transfer is increased with increasing deposition temperature to $400^{\circ}C$. Above $400^{\circ}C$, the deposition is controlled by mass transfer at low spray pressure, and by surface reaction at high spray pressure. As the concentration of spray solution increased the deposition rate increased, and in this experiment the deposition depends on the Rideal-Eley mechanism. The deposition rate increased with increasing substrate temperature up to $400^{\circ}C$ and then decreased due to homogeneous nucleation. The thickness of the deposit increased with increasing spray duration, and the adhesion between substrate and deposit was formed physically.

  • PDF

Reaction of Gae-Phase Atomic Hydrogen with Chemisorbed Hydrogen Atoms on an Iron Surface

  • Kim, M. S.;Ree, J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.985-994
    • /
    • 1997
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on Fe(110) surface is studied by use of classical trajectory procedures. Flow of energy between the reaction zone and bulk solid phase has been treated in the generalized Langevin equation approach. A London-Eyring-Polanyi-Sato energy surface is used for the reaction zone interaction. Most reactive events are found to occur in strong single-impact collisions on a subpicosecond scale via the Eley-Rideal mechanism. The extent of reaction is large and a major fraction of the available energy goes into the vibrational excitation of H2, exhibiting a vibrational population inversion. Dissipation of reaction energy to the heat bath can be adequately described using a seven-atom chain with the chain end bound to the rest of solid. The extent of reaction is not sensitive to the variation of surface temperature in the range of Ts=0-300 K in the fixed gas temperature, but it shows a minimum near 1000 K over the Tg=300-2500 K.

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.