DOI QR코드

DOI QR Code

CHANDRA X-RAY OBSERVATIONS OF EARLY TYPE GALAXIES

  • KIM DONG-WOO (Harvard-Smithsonian Center for Astrophysics)
  • Published : 2003.09.01

Abstract

We review recent observational results on early type galaxies obtained with high spatial resolution Chandra data. With its unprecedented high spatial resolution, Chandra reveals many intriguing features in early type galaxies which were not identified with the previous X-ray missions. In particular, various fine structures of the hot ISM in early type galaxies are detected, for example, X-ray cavities which are spatially coincident with radio jets/lobes, indicating the interaction between the hot ISM and radio jets. Also point sources (mostly LMXBs) are individually resolved down to Lx = a few x $10^{37}\;erg\;sec^{-1}$ and it is for the first time possible to unequivocally investigate their properties and the X-ray luminosity function. After correcting for incompleteness, the XLF of LMXBs is well reproduced by a single power law with a slope of -1.0 - -1.5, which is in contrast to the previous report on the existence of the XLF break at Lx, Eddington = 2 x $10^{38}\;erg\;sec^{-1}$ (i.e., Eddington luminosity of a neutron star binary). Carefully considering both detected and undetected, hidden populations of point sources we further discuss the XLF of LMXBs and the metal abundance of the hot ISM and their impact on the properties of early type galaxies.

Keywords

References

  1. Geochim. Cosmochim. Acta v.53 Anderson,E.;Grevesse,N. https://doi.org/10.1016/0016-7037(89)90286-X
  2. ApJ v.557 Angelligi,L.;Loewenstein,M.;Mushotzky,R.F. https://doi.org/10.1086/323026
  3. ApJ v.510 Arabadjis,J.S.;Bregman,J.N. https://doi.org/10.1086/306616
  4. ApJ v.477 Arimoto,N.;Matsushita,K.;Ishimaru,Y.;Ohashi,T.;Renzini,A. https://doi.org/10.1086/303684
  5. PASJ v.46 Awaki,H.;Mushotzky,R.F.;Tsuru,T.;Fabian,A.C.;Fukazawa,Y.;Loewinstein,M.;Makishima,K.;Matsumoto,H.;Matsushita,K.;Mihara,T.;Ohashi,T.;Ricker,G.R.;Serlemitsos,P.J.;Tsusaka,Y.;Yamazaki,T.
  6. ApJ v.552 Blanton,E.L.;Sarazin,C.L.;Irwin,J.A.
  7. Belczynski(et al.)
  8. ApJ v.539 Buote,D.A. https://doi.org/10.1086/309224
  9. MN v.296 Buote,D.A.;Fabian,A.C. https://doi.org/10.1046/j.1365-8711.1998.01478.x
  10. ApJ v.594 Buote,D.;Lewis,A.D.;Brighenti,F.;Mathews,W.G. https://doi.org/10.1086/377094
  11. ApJ v.470 Davis,D.S.;White,R.E.Ⅲ https://doi.org/10.1086/310289
  12. AA v.127 Ekers,R.D.;Gross,W.M.;Wellington,K.J.;Bosma,A.;Smith,R.M.;Schweizer,F.
  13. AAS v.190 Galmire,G.P.
  14. AJ v.89 Geldzahler,B.J.;Formalont,E.B. https://doi.org/10.1086/113668
  15. MNRAS v.322 Groudfrooij,P.(et al.) https://doi.org/10.1046/j.1365-8711.2001.04154.x
  16. ARAA v.27 Fabbiano,G. https://doi.org/10.1146/annurev.aa.27.090189.000511
  17. ApJS v.80 Fabbiano,G.;Kim,D.W.;Trinchieri,G. https://doi.org/10.1086/191675
  18. ApJ v.588 Fabbiano,G.(et al.) https://doi.org/10.1086/374040
  19. MNRAS v.318 Fabian,A.C.(et al.) https://doi.org/10.1046/j.1365-8711.2000.03904.x
  20. ApJ v.547 Finoguenov,A.;Jones,C. https://doi.org/10.1086/318910
  21. ApJ v.293 Forman,W.;Jones,C.;Tucker,W. https://doi.org/10.1086/163218
  22. astro-ph/0201107 Heinz,S.;Choi,Y.Y.;Reynolds,C.S.;Begelman,M.C. https://doi.org/10.1086/340688
  23. ApJ v.549 Ho,L.C.(et al.) https://doi.org/10.1086/319138
  24. astro-ph/0305345 Humphrey,P.J.;Fabbiano,G.;Elvis,M.;Hurch,M.J.;Balucinska-Church,M. https://doi.org/10.1046/j.1365-8711.2003.06802.x
  25. ApJ v.503 Iyomoto,N.;Makishima,K.;Tashiro,M.;Inoue,S.;Kaneda,H.;Matsumoto,Y.;Mizuno,T. https://doi.org/10.1086/311518
  26. ApJ v.567 Jones,C.(et al.) https://doi.org/10.1086/340114
  27. ApJ v.393 Kim,D.W.;Fabbiano,G.;Trinchieri,G. https://doi.org/10.1086/171492
  28. ApJ v.468 Kim,D.W.;Fabbiano,G.;Matsumoto,H.;Koyama,K.;Trinchieri,G. https://doi.org/10.1086/177679
  29. ApJ v.497 Kim,D.W.;Fabbiano,G.;Mackie,G. https://doi.org/10.1086/305476
  30. ApJ v.441 Kim,D.W.;Fabbiano,G. https://doi.org/10.1086/175348
  31. ApJ v.586 Kim,D.W.;Fabbiano,G. https://doi.org/10.1086/367930
  32. Kim,D.W.;Fabbiano,G.
  33. Kim,D.W.;Fabbiano,G.;Brickhouse,N.
  34. AJ v.90 Knapp,G.R.;Turner,E.L.;Cunniffe,P.E. https://doi.org/10.1086/113751
  35. ApJS v.70 Knapp,G.R.;Guhathakurta,P.;Kim,D.W.;Jura,M. https://doi.org/10.1086/191342
  36. ApJ Kong,A.K.H.;Garcia,M.R.;Primini,F.A.;Di Stefano,R.;Murray,S.S.
  37. MNRAS v.315 Kuntschner,H. https://doi.org/10.1046/j.1365-8711.2000.03377.x
  38. ApJ v.436 Loewenstein,M.;Mushotzky,R.F.;Tamura,T.;Ikebe,Y.;Makishima,K.;Matsushita,K.;Awaki,H.;Serlemitsos,P.J. https://doi.org/10.1086/187636
  39. AA v.304 Matteucci;Gibson
  40. ApJ v.482 Matsumoto,H.;Koyama,K.;Awaki,H.;Tsuru,T.;Loewenstein,M.;Matsushita,K. https://doi.org/10.1086/304132
  41. PASJ v.52 Matsushita,K.;Ohashi,T.;Makishima,K.
  42. ApJ v.534 McNamara,B.R.(et al.) https://doi.org/10.1086/312662
  43. Proc. SPIE v.3114 Murray,S.S.(et al.) https://doi.org/10.1117/12.283772
  44. ApJ v.436 Mushotzky,R.F.;Loewinstein,M.;Awaki,H.;Makishima,K.;Matsushita,K.;Matsumoto,H. https://doi.org/10.1086/187637
  45. AA v.383 Pellegrini,S.;Fabbiano,G.;Fiore,F.;Trinchieri,G.;Antonelli,A. https://doi.org/10.1051/0004-6361:20011482
  46. Proccedings "The High Energy Universe in Sharp Focus" Prestwitch,A.H.;S.Vrtilek(ed.);E.M.Schelegel(ed.);L.Kuhi(ed.)
  47. ApJ v.419 Renzini(et al.) https://doi.org/10.1086/173458
  48. ApJ Sarazin,C.L.;Irwin,J.A.;Bregman,J.N.
  49. ApJ v.556 Sarazin,C.L.;Irwin,J.A.;Bregman,J.N. https://doi.org/10.1086/321618
  50. ApJ v.237 Schweizer,F. https://doi.org/10.1086/157870
  51. astro-ph/0203468 Tremaine,S.(et al.) https://doi.org/10.1086/341002
  52. ApJ v.310 Trinchieri,G.;Fabbiano,G.;Canizares,C.R. https://doi.org/10.1086/164716
  53. ApJ v.428 Trinchieri,G.;Kim,D.W.;Fabbiano,G.;Canizares,C. https://doi.org/10.1086/174265
  54. Proc. SPIE v.3113 van Speybroeck,L.P.(et al.) https://doi.org/10.1117/12.278890
  55. Porc. SPIE v.4012 Weisskopf,M.C.(et al.)
  56. ApJ v.571 White Ⅲ,R.E.;Sarazin,C.L.;Kulkarni,R. https://doi.org/10.1086/341122
  57. ApJ Zezas,A.;Fabbiano,G.