DOI QR코드

DOI QR Code

Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths

  • Park, Doek-Yong (Department of Applied Materials Engineering Hanbat National University) ;
  • Ko, Jang-Myoun (Department of Chemical Technology Hanbat National University)
  • Published : 2003.11.01

Abstract

Magnetic CoW thin film alloys were electrodeposited from citrate baths to investigate the resulting microstructure and magnetic properties. Deposit tungsten (W) content in the films electrodeposited at $70^{\circ}C$ were independent of current density, while coercivity decreased from hard $(H_{c,//}\~150\;Oe\;and\;H_{c.{\bot}}\;\~240\;Oe)$ to soft magnetic properties $(H_{c,//}\~20\;Oe\;and\;H_{c.{\bot}}\;\~30\;Oe)$ with increasing current densities from $10\;to\;100mA{\cdot}cm^2$, with deposit W content $(\~40\%)$ relatively unaffected by the applied current density. X-ray diffraction analysis indicated that hcp $Co_3W$ phases [(200), (201) and (220) planes] in the CoW films electrodeposited at $70^{\circ}C\;and\;10mA{\cdot}cm^{-2}$ were dominant, whereas amorphous CoW phases with small amount of hcp $Co_3W$ [(002) planes] were dominant with deposition at $70^{\circ}C\;and\;100mA{\cdot}cm^{-2}$. At intermediate current densities $(25\;and\;50mA{\cdot}cm^{-2}),\;hop\;Co_3W$ phases [(200), (002), (201) and (220)] were observed. The average grain size was measured to be 30 nm from Sheller formula. It is suggested that the change of the deposit coercivities in the CoW thin films electrodeposited at $70^{\circ}C$ is attributed to the change of microstructures with varying the current density. Nanostructured $Co_3W/amorphous-CoW$ multilayers were fabricated by alternating current density between 10 and $100 mA{\cdot}cm^{-2}$, varying the individual layer thickness. The magnetic properties of $Co_3W/amorphous-CoW$ multilayers were strongly dependent on the thickness of the alternating hard and soft magnetic thin films. The nanostructured $Co_3W/amorphous-CoW$ multilayers exhibited a shift from low to high coercivities suggesting a strong coupling effect.

Keywords

References

  1. O. Younes and E. Gileadi, J. Electrochem. Soc. 149 (2002) C 100 https://doi.org/10.1149/1.1433750
  2. A. Crowson and E.S. Chen, JOM, 43 (1991) 27
  3. D.-Y. Park, N. V. Myung, M. Schwartz, and K. Nobe, EIectrochim.Acta, 47 (2002) 289
  4. M. Donten, T. Gromulski, and Z. Stojek, J. AUoys and Compounds,279 (1998) 272 https://doi.org/10.1016/S0925-8388(98)00638-0
  5. C. G. Fink and F. L. Jones, Tmns. EIectrochem. Soc. 59 (1931) 461 https://doi.org/10.1149/1.3497829
  6. A. Brenner, Electrodeposition of Alloys, Vol. 2, Academic Press,New York, NY, 1963, P. 589
  7. S. M. Mayanna, N. Nunichandraiah, and T. Mimani, J. Appl.Etectmchem. 23 (1993) 339 https://doi.org/10.1007/BF00296689
  8. S. M. Mayanna and T. Mimani, Surf. Coat. Technot. 19 (1996) 246
  9. A. Chiu, I. Croll, D. E. Heim, R. E. Jones, Jr., P. Kasiraj, K.B.Klassen, and C. D. R. G. Simmons, IBM J. Res. DevetoP, 40 (1996)283 https://doi.org/10.1147/rd.403.0283
  10. P. C. Andricacos and N. Robertson, IBM J. Res. DevetoP, 42 (1998) 671 https://doi.org/10.1147/rd.425.0671
  11. E. J. OSullivan, E. I. Cooper, L. T. Romankiw, K. T. Kwietniak, P. L.Trouilloud, J. Horkans, C. V. Jahnes, I. V. Babich, S. Krongelb, S. C.Hegde, J. A. Tomello, N. C. LaBianca, J. M. Cotte, and T. J.Chainer, IBM J. Res. Devetop, 42 (1998) 681 https://doi.org/10.1147/rd.425.0681
  12. C. Liu, T. Tsao, G.-B. Lee, J. T. S. Leu, Y. W. Yi, Y.-C. Tai, and C-M. Ho, Sensors and Actuators 78 (1999) 190 https://doi.org/10.1016/S0924-4247(99)00238-1
  13. F. E. Rasmussen, J. T. Ravnkilde, P. T. Tang, O. Hansen, and S.Bouwstra, Sensors and Actuators A, 92 (2001) 242 https://doi.org/10.1016/S0924-4247(01)00556-8
  14. A. Kohn, M. Eizenberg, Y. Shacham-Diamand, B. Israel, and Y.Sverdlov, Micmetectronic Eng. 55 (2001) 297 https://doi.org/10.1016/S0167-9317(00)00460-3
  15. A. Kohn, M. Eizenberg, Y. Shacham-Diamand, and Y. Sverdlov, Mater. Sci. Eng. A302 (2001) 18
  16. V. G. Shadrow, A. V. Boltushkin, T. A. Tochitsku, and L. B.Sosnovskaja, Thin Solid Fitms, 202 (1991) 61 https://doi.org/10.1016/0040-6090(91)90541-5
  17. U. Admon, M. P. Danel, and E.Grunbaum, J. Appt. Phys. 59 (1986) 2002 https://doi.org/10.1063/1.336380
  18. Z. A. Hamid, Mater. Lett. 57 (2003) 2558 https://doi.org/10.1016/S0167-577X(02)01311-3
  19. M. Naoe, H. Kazama, Y. Hoshi, and S. Yamanaka, J. Appt. Phys. 53 (1982) 7846 https://doi.org/10.1063/1.330217
  20. M. Svensson, U. Wahlstom, and G. Holmbom, Suif. Coat. Tech. 105 (1998) 218 https://doi.org/10.1016/S0257-8972(98)00458-7
  21. T. P. Frantsevich-Zabludovskaya and A.I. Zayats, 7h. Prikt.Khim. 30 (1957) 723
  22. T. P. Hoar and I. A. Bucklow, Trans. Inst. Met. Finish. 32 (1955)186
  23. T. Homma, K. Inoue, H. Asai, K. Ohrui, T. Osaka, Y. Yamazaki, andT. Namikawa, IEEE Trans. J. Maen. Jpn. 6 (9) (1991) 758 https://doi.org/10.1109/TJMJ.1991.4565247

Cited by

  1. Modern trends in tungsten alloys electrodeposition with iron group metals vol.48, pp.6, 2012, https://doi.org/10.3103/S1068375512060038
  2. Gel-chromatographic separation of boron-gluconate electrolyte for obtaining nano-crystalline Co–W coatings: Composition and electrochemical activity of components. Part I. Gel-chromatographic study of electrolyte, separation and composition of components vol.52, pp.4, 2016, https://doi.org/10.3103/S1068375516040049
  3. Structural, magnetic, and mechanical properties of electrodeposited cobalt–tungsten alloys: Intrinsic and extrinsic interdependencies vol.104, 2013, https://doi.org/10.1016/j.electacta.2013.04.022