Growth of SiC Nanorods Using Fe and Hexamethyldisilabutane

Fe와 Hexamethyldisilabutane를 이용한 SiC 나노로드의 성장

  • Rho Dae-Ho (Korea University, Department of Materials Science and Engineering) ;
  • Kim Jae-Soo (Korea Institute of Science and Technology, Metal Processing Research Center) ;
  • Byun Dong-Jin (Korea University, Department of Materials Science and Engineering) ;
  • Yang Jae-Woong (Daijin University, Department of Advance Materials Science and Engineering) ;
  • Kim Na-Ri (Korea University, Department of Materials Science and Engineering)
  • 노대호 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 김나리 (고려대학교 재료공학과)
  • Published : 2003.06.01

Abstract

SiC nanorod was synthesized directly on Si substrate using hexamethyldisilabutane and Fe catalyst with (111) direction. Fe acted a liquid catalyst at growth condition. Grown SiC nanorod has about 30nm diameter and $5{\mu}m$ length. SiC nanorod growth was divided by trro regions with diameter distribution. This diameter distribution were occurred by surface deposition at as - grown nanorod's surface by limitation of growth rate. At higher temperature, these division not occurred. Growth temperature and flow rates affected diameter and morphology of nanorods. With increasing flow rate of source gas, nanorod's diameter increased because of deactivation effect. Case of the increasing temperature, growth rate increased so deactivation did not occurred.

Keywords

References

  1. S. Nishnino, H. Suhara, H. Ono, H. Matsuna-mi, J. Appl. Phys., 61 (1987) 4889 https://doi.org/10.1063/1.338355
  2. O. Kordina, L. O. Bjorketun, A. Henry, C.Hallin, R. C. Glass, L. Hultman, J. E. Su-ndgren, E. Janzen, J. Cryst. Gr., 154 (1995)303 https://doi.org/10.1016/0022-0248(95)00136-0
  3. J. M. Bonard, H. Kind, T. Stockli, L. O. NiIson, Solid-State Electronics, 45 (201) 893 https://doi.org/10.1016/S0038-1101(00)00213-6
  4. J. H. Boo, K. S. Yu, Y. Kim, S. H. Yeon. J. N. Jung, Chem. Mater., 7 (1995) 694 https://doi.org/10.1021/cm00052a014
  5. H. J. Dai, E. W. Wang, Y..Z. Lu, S. S. Fang,C. M. Lieber, Nature, 375 (1995) 769 https://doi.org/10.1038/375769a0
  6. G. W. Meng, L. D. Zhang, C. M. Mo, F. Phi-llipp, Y. Qin, H. J. Li, S. P. Feng, S. Y. Zha-ng, Mater. Res. Bull., 34 (1999) 783 https://doi.org/10.1016/S0025-5408(99)00073-2
  7. C. C. Tang, S. S. Fan, H. Y. Dang, J. HZhao, C. Zhang, P. Li, Q. Gu, J. Cryst. Gr.,223 (2001) 125 https://doi.org/10.1016/S0022-0248(01)00597-8
  8. W. Shi, Y. Zheng, H. Peng, N. Wang, C. S.Lee, S. T. Lee, J. Am. Ceram. Soc., 83(2000) 3228 https://doi.org/10.1111/j.1151-2916.2000.tb01714.x
  9. Y. B. Li, S. S. Xie, X. P. Zou, D.S. tang, Z. Q.Liu, W. Y. Zhou, G. Wang, J. Cryst. Gr., 223(2000) 125
  10. C. C. Tang, S. S. Fan H. Y. Dang, J. H. Zhao,C. Zhang P. Li, Q. Gu, J. Cryst. Gr 210(2000) 595 https://doi.org/10.1016/S0022-0248(99)00737-X
  11. E. I. Givargizov, J. Cryst. Gr., 31 (1975) 20 https://doi.org/10.1016/0022-0248(75)90105-0
  12. Ishizaka. A, Shiraki. Y, J. Electrochem. Soc.,133 (1986) 166
  13. I. C. Leu, M. H. Hon, J. Cryst. Gr., 236(2002) 171 https://doi.org/10.1016/S0022-0248(01)02274-6
  14. Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee,X. D. Han, I. Bello, S. T. Lee, J. Appl. Phys.,85 (1999) 7981 https://doi.org/10.1063/1.369389
  15. J. Lahaye, D. Badie, J. Ducret, Carbon, 15(1977) 87 https://doi.org/10.1016/0008-6223(77)90022-7
  16. Z. W. Pan, S. S. Xie, L. F. Sun, G. Wang,Chem Phys. Lett., 299 (1999) 97 https://doi.org/10.1016/S0009-2614(98)01240-8
  17. E. I. Givargizov, J. Cryst. Gr., 20 (1973) 217 https://doi.org/10.1016/0022-0248(73)90008-0