X선 촬영 시 연령별 장기선량 차이 연구

Investigation of organ dose difference of age phantoms for medical X-ray examinations

  • 박상현 (한양대학교 원자력공학과) ;
  • 이춘식 (방사선 안전 신기술 연구센터) ;
  • 김우란 (한양대학교 원자력공학과) ;
  • 이재기 (한양대학교 원자력공학과)
  • 발행 : 2003.03.30

초록

진단 X선 촬영에 의한 소아 및 성인의 장기 등가선량과 유효선량을 구하는 방법론을 개발하였다. 연령에 따른 체격의 차이가 방사선량 분포에 미치는 영향을 평가하기 위해, 식도를 포함한 4개 연령군의 MIRD형 수학적 모의피폭체를 제작하였다. 두 가지의 전형적인 진단 X선 절차인 흉부 PA와 복부 AP 진단 X선 촬영을 모사하여, 연령별 선량을 계산하였다. 흉부 PA 진단 X선 촬영절차에 의해서 환자들은 대략 0.03mSv의 유효선량을 피폭하는 것으로 나타났다. 복부 AP 진단 X선 촬영절차의 경우 연령에 따라서 0.4에서 1.7mSv의 유효선량을 받는 것으로 나타났다. 한정된 조사장을 갖는 방사선에 대해서 선량을 평가했기 때문에, 장기의 위치와 크기, 모양, 그리고 방사선이 입사하는 표면으로부터의 필이 등이 선량 계산에 상당한 영향을 미쳤다. 따라서 진단 X선의 조사장이나 선질의 조절 등을 통해 방호의 최적화를 위한 노력이 중요한 것으로 나타났다. 본 연구에서 개발된 선량계측 절차는 의료방사선 방호의 최적화를 위한 수단으로 활용될 수 있다.

Methodology for calculating the organ equivalent doses and the effective doses of pediatric and adult patients undergoing medical X-ray examinations were established. The MIRD-type mathematical phantoms of 4 age groups were constructed with addition of the esophagus to the same phantoms. Two typical examination procedures, chest PA and abdomen AP, were simulated for the pediatric patients as well as the adult as illustrative examples. The results confirmed that patients pick up approximate 0.03 mSv of effective dose from a single chest PA examination, and 0.4 to 1.7 mSv from an abdomen AP examination depending on the ages. For dose calculations where irradiation is made with a limited field, the details of the position, size and shape of the organs and the organ depth from the entrance surface considerably affect the resulting doses. Therefore, it is important to optimize radiation protection by control of X-ray properties and beam examination field. The calculation result, provided in this study, can be used to implement optimization for medical radiation protection.

키워드

참고문헌

  1. United Nations Environment Programme, Radiation : Doses, Effect,. Risks, 2nd Ed, Blackwell Reference (1991)
  2. International Atomic Energy Agency, 1996 International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety series No. 115 (1996)
  3. D. Hart, D. G. Jones and B. F. Wall, Estimation of Effective Dose in Diagnostic Radiology from Entrance Surface Dose and Dose-Area Product Measurements, Report NRPB-R262, National Radiological Protection Board, Chilton, Didcot, UK(1994)
  4. D. Hart, D. G. Jones and B. F. Wall, Coefficients for Estimating Effective Doses from Pediatric X-ray Examinations, Report NRPB-R279, National Radiological Protection Board, Chilton, Didcot, UK(1995)
  5. Jones, D. G. and Shrimpton, P. C. Survey of CT Practice in the UK. Part 3: Normalized Organ Doses Calculated using Monte Carlo Techniques. Chilton, NRPB-R250 (London, HMSO) (1991)
  6. M. Cristy and K. F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources, Oak Ridge National Laboratory Report ORNL/ TM-8381/V1 (1987)
  7. W. S. Snyder, M. R. Ford and G. G. Warner, Estimates of Specific Absorbed Fraction for Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom, Society of Nuclear Medicine, New York, MIRD Pamphlet No.5. Revised(1978)
  8. M. Zankl, N. Petoussi, and G. Drexler, ‘Effective Dose and Effective Dose Equivalent-The Impact of the New ICRP Definition for External Photon Irradiation,’ Health Phys., 62(5), 395-399 (1992)
  9. International Commission on Radiological Protection, 1990 Recommendation of the International commission on Radiological Protection, ICRP Publication 60, Pergamon Press, (1990)
  10. LANL Group X-6, MCNP-A General Monte Carlo Code N- Particle Transport Code Version 4B, LA-12625-M(1997)
  11. D. G. Jones and B. F. Wall. Organ Doses from Medical X-ray Examinations Calculated Using Monte Carlo Techniques, Report NRPB-RI86, National Radiological Protection Board, Chilton, Didcot, UK(1985)
  12. K. A. Van Riper, SABRINA User's Guide, LA-UR-93-3696, LANL (1993)