DOI QR코드

DOI QR Code

Fatigue of tubular steel lighting columns under wind load

  • Peil, U. (Institute for Steel Structures, Technical University of Braunschweig) ;
  • Behrens, M. (Institute for Steel Structures, Technical University of Braunschweig)
  • Published : 2002.10.25

Abstract

Lighting and traffic signal columns are mainly stressed by excitation due to natural, gusty wind. Such columns typically have a door opening about 60 cm above ground level for the connection of the buried cable with the column's electric system. When the columns around this notch are inadequately designed, vibrations due to gusty winds will produce considerable stress amplitudes in this area, which lead to fatigue cracks. To give a realistic basis for a reliable and economic design of lighting and traffic signal columns, a number of experimental and theoretical investigations have been made. The proposed design concept allows the life of such columns to be assessed with a satisfactory degree of accuracy.

Keywords

References

  1. Badde, O. and Plate, E. (1994), "Einfluss verschiedener Bebauungsparameter auf die windinduzierte Gebaudebelastung", SFB-Abschlusskolloquium, University of Karlsruhe, Germany.
  2. ENV 1991-2-4:1995, "Eurocode 1, Basis of Design and Action on Structures, Part 2-4: Wind Actions", CEN, Brussels, Belgium.
  3. ENV 1993-1-1:1992, "Eurocode 3, Design of Steel Structures, Part 1-1: General rules for buildings", CEN, Brussels, Belgium.
  4. European Wind Atlas (1990), Meteorology and Wind Energy Department, Risø National Laboratory, Denmark.
  5. Gilani, A. and Whittaker, A. (2000), "Fatigue-life of steel post structures", Journal of Structural Engineering, 126(3), 322-340. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(322)
  6. Hamilton, H.R. III, Riggs, G.S. and Puckett, J.A. (2000), "Increased damping in cantilevered traffic signal structures", J. Struct. Eng., 126(4), 530-537. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(530)
  7. Niemann, H.J. (1990), "Dynamic response of cantilivered structures to wind turbulence", Structural Dynamics, Kratzig et al. (eds.), Balkema, Rotterdam, Netherlands, 509-516.
  8. Niemann, H.J. (1997), "Die Spektraldichte der Windturbulenz als Grundlage zur rechnerischen und experimentellen Untersuchung boenerregter Schwingungen", Windkanalanwendungen fur die Baupraxis, Sockel, H. (ed.), WtG-Berichte Nr. 4, Germany.
  9. Pagnini, L.C. and Solari, G. (1998), "Wind actions and effects on steel poles and monotubular towers", 2nd East European Conference on Wind Engineering, Prague, Czechy, 503-510.
  10. Pagnini, L.C. and Solari, G. (1999), "Damping of steel poles and monotubular towers under wind action", Wind Engineering into the 21st Century, Larsen, Larose & Livesey (eds.), Balkema, Rotterdamn, Netherlands, 509-516.
  11. Peil, U. (1994), "Baudynamik" Stahlbau Handbuch, Band 1 Teil A, Stahlbauverlagsgesellschaft mbH, Dusseldorf, Germany.
  12. Peil, U. and Behrens, M. (2000a), "Ermudung von Beleuchtungs- und Signalmasten durch den boigen Wind", Forschungsbericht 1/2000, Deutscher Ausschuss fur Stahlbau DASt (ed.), Stahlbauverlagsgesellschaft mbH, Düsseldorf, Germany.
  13. Peil, U. and Behrens, M. (2000b), "Dynamisches Verhalten von Lichtmasten", Dynamische Probleme Modellierung und Wirklichkeit, 6. Tagung am 5. und 6. Oktober 2000, Mitteilung des Curt-Risch-Instituts Hannover, Germany.
  14. prEN 40-3:1999 "Lighting columns - Design and verification", CEN, Brussels, Belgium.
  15. Quadflieg, H. (1975), "Aerodynamische Aspekte zur Verminderung wirbelinduzierter Wechsellasten auf zylindrische Bauwerke", Dissertation, RWTH Aachen, Germany
  16. Telljohann, G. (1998), "Windlastmodelle für hohe, schwingungsanfällige Bauwerke", Dissertation, Technical University of Braunschweig. Germany.

Cited by

  1. Structural health monitoring of wind towers: remote damage detection using strain sensors vol.20, pp.5, 2011, https://doi.org/10.1088/0964-1726/20/5/055009
  2. Closed form solution of the alongwind-induced fatigue damage to structures vol.31, pp.10, 2009, https://doi.org/10.1016/j.engstruct.2009.05.016
  3. Directional Wind-Induced Fatigue of Slender Vertical Structures vol.130, pp.7, 2004, https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(1032)
  4. Time-Domain Model for Predicting Aerodynamic Loads on a Slender Support Structure for Fatigue Design vol.136, pp.6, 2010, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000122
  5. Wind-induced fatigue of structures under neutral and non-neutral atmospheric conditions vol.95, pp.9-11, 2007, https://doi.org/10.1016/j.jweia.2007.02.012
  6. Dynamic crosswind fatigue of slender vertical structures vol.5, pp.6, 2002, https://doi.org/10.12989/was.2002.5.6.527
  7. On-line monitoring of wind-induced stresses and fatigue damage in instrumented structures vol.20, pp.10, 2013, https://doi.org/10.1002/stc.1536
  8. The role of parameter uncertainties in the damage prediction of the alongwind-induced fatigue vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.03.027
  9. Structural health monitoring of wind towers: residual fatigue life estimation vol.22, pp.4, 2013, https://doi.org/10.1088/0964-1726/22/4/045017
  10. Bi-modal spectral method for evaluation of along-wind induced fatigue damage vol.9, pp.4, 2006, https://doi.org/10.12989/was.2006.9.4.255
  11. Fragility analysis of wind-excited traffic signal structures vol.101, 2015, https://doi.org/10.1016/j.engstruct.2015.07.044
  12. Influence of weather conditions and eccentric aerodynamic loading on the large amplitude aeroelastic vibration of highway tubular poles vol.29, pp.12, 2007, https://doi.org/10.1016/j.engstruct.2007.08.010
  13. Evaluation of base shield plates effectiveness in reducing the drag of a rough circular cylinder in a cross flow vol.11, pp.5, 2008, https://doi.org/10.12989/was.2008.11.5.377
  14. Bimodal Alongwind Fatigue of Structures vol.132, pp.6, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(899)
  15. Wind-induced fatigue collapse of real slender structures vol.32, pp.12, 2010, https://doi.org/10.1016/j.engstruct.2010.09.002
  16. Wind-induced fatigue assessment of welded connections in steel tall buildings using the theory of critical distances pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1455608
  17. SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling vol.21, pp.5, 2002, https://doi.org/10.12989/sss.2018.21.5.591
  18. New Approach for Vibration Suppression through Restrictors on Towering Steel Columns with Supporting Frame vol.2020, pp.None, 2002, https://doi.org/10.1155/2020/8761750