References
- Badde, O. and Plate, E. (1994), "Einfluss verschiedener Bebauungsparameter auf die windinduzierte Gebaudebelastung", SFB-Abschlusskolloquium, University of Karlsruhe, Germany.
- ENV 1991-2-4:1995, "Eurocode 1, Basis of Design and Action on Structures, Part 2-4: Wind Actions", CEN, Brussels, Belgium.
- ENV 1993-1-1:1992, "Eurocode 3, Design of Steel Structures, Part 1-1: General rules for buildings", CEN, Brussels, Belgium.
- European Wind Atlas (1990), Meteorology and Wind Energy Department, Risø National Laboratory, Denmark.
- Gilani, A. and Whittaker, A. (2000), "Fatigue-life of steel post structures", Journal of Structural Engineering, 126(3), 322-340. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(322)
- Hamilton, H.R. III, Riggs, G.S. and Puckett, J.A. (2000), "Increased damping in cantilevered traffic signal structures", J. Struct. Eng., 126(4), 530-537. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(530)
- Niemann, H.J. (1990), "Dynamic response of cantilivered structures to wind turbulence", Structural Dynamics, Kratzig et al. (eds.), Balkema, Rotterdam, Netherlands, 509-516.
- Niemann, H.J. (1997), "Die Spektraldichte der Windturbulenz als Grundlage zur rechnerischen und experimentellen Untersuchung boenerregter Schwingungen", Windkanalanwendungen fur die Baupraxis, Sockel, H. (ed.), WtG-Berichte Nr. 4, Germany.
- Pagnini, L.C. and Solari, G. (1998), "Wind actions and effects on steel poles and monotubular towers", 2nd East European Conference on Wind Engineering, Prague, Czechy, 503-510.
- Pagnini, L.C. and Solari, G. (1999), "Damping of steel poles and monotubular towers under wind action", Wind Engineering into the 21st Century, Larsen, Larose & Livesey (eds.), Balkema, Rotterdamn, Netherlands, 509-516.
- Peil, U. (1994), "Baudynamik" Stahlbau Handbuch, Band 1 Teil A, Stahlbauverlagsgesellschaft mbH, Dusseldorf, Germany.
- Peil, U. and Behrens, M. (2000a), "Ermudung von Beleuchtungs- und Signalmasten durch den boigen Wind", Forschungsbericht 1/2000, Deutscher Ausschuss fur Stahlbau DASt (ed.), Stahlbauverlagsgesellschaft mbH, Düsseldorf, Germany.
- Peil, U. and Behrens, M. (2000b), "Dynamisches Verhalten von Lichtmasten", Dynamische Probleme Modellierung und Wirklichkeit, 6. Tagung am 5. und 6. Oktober 2000, Mitteilung des Curt-Risch-Instituts Hannover, Germany.
- prEN 40-3:1999 "Lighting columns - Design and verification", CEN, Brussels, Belgium.
- Quadflieg, H. (1975), "Aerodynamische Aspekte zur Verminderung wirbelinduzierter Wechsellasten auf zylindrische Bauwerke", Dissertation, RWTH Aachen, Germany
- Telljohann, G. (1998), "Windlastmodelle für hohe, schwingungsanfällige Bauwerke", Dissertation, Technical University of Braunschweig. Germany.
Cited by
- Structural health monitoring of wind towers: remote damage detection using strain sensors vol.20, pp.5, 2011, https://doi.org/10.1088/0964-1726/20/5/055009
- Closed form solution of the alongwind-induced fatigue damage to structures vol.31, pp.10, 2009, https://doi.org/10.1016/j.engstruct.2009.05.016
- Directional Wind-Induced Fatigue of Slender Vertical Structures vol.130, pp.7, 2004, https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(1032)
- Time-Domain Model for Predicting Aerodynamic Loads on a Slender Support Structure for Fatigue Design vol.136, pp.6, 2010, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000122
- Wind-induced fatigue of structures under neutral and non-neutral atmospheric conditions vol.95, pp.9-11, 2007, https://doi.org/10.1016/j.jweia.2007.02.012
- Dynamic crosswind fatigue of slender vertical structures vol.5, pp.6, 2002, https://doi.org/10.12989/was.2002.5.6.527
- On-line monitoring of wind-induced stresses and fatigue damage in instrumented structures vol.20, pp.10, 2013, https://doi.org/10.1002/stc.1536
- The role of parameter uncertainties in the damage prediction of the alongwind-induced fatigue vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.03.027
- Structural health monitoring of wind towers: residual fatigue life estimation vol.22, pp.4, 2013, https://doi.org/10.1088/0964-1726/22/4/045017
- Bi-modal spectral method for evaluation of along-wind induced fatigue damage vol.9, pp.4, 2006, https://doi.org/10.12989/was.2006.9.4.255
- Fragility analysis of wind-excited traffic signal structures vol.101, 2015, https://doi.org/10.1016/j.engstruct.2015.07.044
- Influence of weather conditions and eccentric aerodynamic loading on the large amplitude aeroelastic vibration of highway tubular poles vol.29, pp.12, 2007, https://doi.org/10.1016/j.engstruct.2007.08.010
- Evaluation of base shield plates effectiveness in reducing the drag of a rough circular cylinder in a cross flow vol.11, pp.5, 2008, https://doi.org/10.12989/was.2008.11.5.377
- Bimodal Alongwind Fatigue of Structures vol.132, pp.6, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(899)
- Wind-induced fatigue collapse of real slender structures vol.32, pp.12, 2010, https://doi.org/10.1016/j.engstruct.2010.09.002
- Wind-induced fatigue assessment of welded connections in steel tall buildings using the theory of critical distances pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1455608
- SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling vol.21, pp.5, 2002, https://doi.org/10.12989/sss.2018.21.5.591
- New Approach for Vibration Suppression through Restrictors on Towering Steel Columns with Supporting Frame vol.2020, pp.None, 2002, https://doi.org/10.1155/2020/8761750