DOI QR코드

DOI QR Code

CFD calculations of indicial lift responses for bluff bodies

  • Published : 2002.04.25

Abstract

Two-dimensional formulations for wind forces on elongated bodies, such as bridge decks, are reviewed and links with expressions found in two-dimensional airfoil theory are pointed out. The present research focus on indicial lift responses and admittance functions which are commonly used to improve buffeting analysis of bluff bodies. A computational fluid dynamic (CFD) analysis is used to derive these aerodynamic functions for various sections. The numerical procedure is presented and results are discussed which demonstrate that the particular shapes of these functions are strongly dependent on the evolution of the separated flows around the sections at the early stages.

Keywords

References

  1. Brar, P. S., Raul R. and Scanlan R. H. (1996), "Numerical calculation of flutter derivatives via indicial functions", J. Fluids Struct., 10, 337-351. https://doi.org/10.1006/jfls.1996.0022
  2. Davenport, A. G. (1962), "The buffeting of a suspension bridge by storm wind", J. Struct. Div., 88, 233-268.
  3. Hughes, T. J. R., Mallet, M. and Mizukami, A. (1986), "A New Finite Element Formulation for Computational Fluid Dynamics II. Beyond SUPG", Comput. Meth. Appl. Mech. Engng., 54, 341-355. https://doi.org/10.1016/0045-7825(86)90110-6
  4. Jancauskas, E. D. and Melbourne W. H. (1986), "The aerodynamic admittance of two-dimensional rectangular section cylinders in smooth flow", J. Wind Eng. Ind. Aerod., 23, 395-408. https://doi.org/10.1016/0167-6105(86)90057-7
  5. Kechkar, N. and Silvester, D. (1992), "Analysis of locally stabilized mixed finite element methods for the Stokes problem", Math. Comp., 58(197), 1-10. https://doi.org/10.1090/S0025-5718-1992-1106973-X
  6. Kussner, H. G. (1936), "Zusammenfassender Bericht über den instationaren Auftrieb von Flügeln", Luftfahrt- Forshung, 13, 410-424.
  7. Larose, G. L. and Livesey, F. M. (1997), "Performance of streamlined bridge decks in relation to the aerodynamics of a flat plate", J. Wind Eng. Ind. Aerod., 69-71, 851-860. https://doi.org/10.1016/S0167-6105(97)00211-0
  8. Launder, B. E. and Spalding, D. B. (1974), "The numerical computation of turbulent flows", Comput. Meth. Appl. Mech. Eng., 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  9. Liepmann, H. W. (1952), "On the application of statistical concepts to the buffeting problem", J. Aeronaut. Sci., 19, 793-800. https://doi.org/10.2514/8.2491
  10. Murakami, S. (1997), "Overview of turbulence models applied in CWE-97", Proc. of the 2nd European & African Conf. of Wind Eng., Genova, Italy, June 22-26.
  11. Orszag, S. A. and Yakhot, V. (1993), "Renormalization group modeling and turbulence simulation", Near-Wall Turbulent Flows, Edited by So, R. M. C., Speziale, C. G., Launder, B. E., Elsevier.
  12. Rodi, W. (1995), "Introduction to the numerical simulation approaches in wind engineering", Wind Climate in Cities, NATO ASI Series, Kluwer Academic Publishers.
  13. Scanlan, R. H., Béliveau, J. G. and Budlong, K. (1974), "Indicial aerodynamic functions for bridges decks", J. Eng. Mech. ASCE, 100, 657-672.
  14. Scanlan, R. H. (1993), "Problematics in formulation of wind-force models for bridges decks", J. Eng. Mech. ASCE, 119, 1353-1375. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:7(1353)
  15. Scanlan, R. H. and Jones, N. P. (1999), "A form of aerodynamic admittance for use in bridge aeroelastic analysis", J. Fluids Struct., 13(7/8),1017-1027. https://doi.org/10.1006/jfls.1999.0243
  16. Sears, W. R. (1941), "Some aspects of non-stationary airfoil theory and its practical application", J. Aeronautics Sci., 8(3), 104-108. https://doi.org/10.2514/8.10655
  17. Theodorsen, T. (1935), "General theory of aerodynamic instability and the mechanism of flutter", NACA Report 496, U. S. Advisory Committee for Aeronautics, Langley, VA.
  18. Turbelin, G. (2000), "Modelisation de la turbulence atmospherique en vue de l'etude du chargement aerodynamique des structures soumises aux effets du vent", Ph. D. Thesis, Universite d'Evry, France.
  19. Wagner, H. (1925), "Uber die Entstehung des dynamischen Auftriebes von Tragflügeln", Zeit. Angew. Math. u. Mech., 5(1), 17-35. https://doi.org/10.1002/zamm.19250050103

Cited by

  1. Influence of the mass ratio on the fluidelastic instability of a flexible cylinder in a bundle of rigid tubes vol.47, 2014, https://doi.org/10.1016/j.jfluidstructs.2013.11.005
  2. Numerical bridge deck studies using finite elements. Part I: flutter vol.19, pp.2, 2004, https://doi.org/10.1016/j.jfluidstructs.2003.12.005
  3. Development of a time delay formulation for fluidelastic instability model vol.70, 2017, https://doi.org/10.1016/j.jfluidstructs.2017.01.020