• 제목/요약/키워드: RNG $k-{\varepsilon}$

검색결과 90건 처리시간 0.026초

RNG k-$\varepsilon$모델을 이용한 포트/밸브계 및 실린더내의 유동해석 (Flow Analysis with a Port/Valve Assembly and Cylinder Using a RNG k-$\varepsilon$ Model)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.436-444
    • /
    • 1998
  • Applicability of the RNG k-$\varepsilon$ model to the analysis of unsteady axisymmetric turbulent flow of a reciprocating engine including port/valve assembly is studied numerically. The governing equations based on non-orthogonal including port/valve assembly is studied numerically. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretised by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-$\varepsilon$ model of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly are compared to these from the modified k-$\varepsilon$ model and experimental data. Using the RNG k-$\varepsilon$ model seems the have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly over the modified k-$\varepsilon$model.

  • PDF

RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측 (Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model)

  • 김성구;오군섭;김용모;이창식
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

RNG $k-\varepsilon$ 모델의 적용성에 대한 연구 (A Study of Applicability of a RNG $k-\varepsilon$ Model)

  • 양희천;유홍선;임종한
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

유동장 및 분무특성에 미치는 난류모델의 영향 (The Effect of Turbulence Model on the Flow Field and the Spray Characteristics)

  • 양희천;유홍선
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

대형 디젤기관에서 매연가스 예측에 관한 연구 (Study on Smoke Prediction in Heavy-duty Diesel Engine)

  • 백두성;이종선
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.865-870
    • /
    • 2008
  • 대형디젤 기관에서 매연배기가스에 대한 배기가스 재순환장치의 영향을 KIVA-3V 전산유체해석코드를 통해서 수치 해석적으로 연구했다. 지배방정식으로 RNG k-$\varepsilon$ 난류 모델을 이용했고, 무화, 벽 침투 그리고 매연 등의 물리적인 현상을 나타내기 위해서 TAB, Wave, Watkins-Park, Nagle-Strickland 모델이 적용되었다.

엔진 흡입.압축과정의 유동해석을 위한 난류모델의 평가 (Assessment of Turbulence Models for Engine Intake and Compression Flow Analysis)

  • 박권하;김재곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1129-1140
    • /
    • 2008
  • Many turbulence models have been developed in order to analyze the flow characteristics in an engine cylinder. Watkins introduced k-${\varepsilon}$ turbulence model for in-cylinder flow, and Reynolds modified turbulence dissipation rate by applying rapid transformation theory, Wu suggested k-${\varepsilon}-{\tau}$ turbulence model in which length scale and time scale are separated to introduce turbulence time scale, and Orszag proposed k-${\varepsilon}$ RNG model. This study applied the models to in-cylinder flow induced by intake valve and piston moving. All models showed similar flow fields during early stage of intake stroke. At the end of compression stroke, ${\kappa}-{\varepsilon}$ Watkins, ${\kappa}-{\varepsilon}$ Reynolds and ${\kappa}-{\varepsilon}$ RNG predicted well second and third vortex, especially ${\kappa}-{\varepsilon}$ RNG produced new forth vortex near central axis at the lower part of cylinder which was not predicted by the other models.

3차원 튜브 뱅크 주위의 난류 유동장 및 열전달에 대한 수치 해석적 연구 (The Numerical Simulation of Flow Field and Heat Transfer around 3-D Tube Banks)

  • 박상길;김경원;유홍선;최영기
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.375-385
    • /
    • 1996
  • Turbulent flow and heat transfer characteristics around staggered tube banks were studied using the 3-D Navier-Stokes equations and energy equation governing a steady incompressible flow, which were reformulated in a non-orthogonal coordinate system with cartesian velocity components and discretized by the finite volume method with a non-staggered variable arrangement. The predicted turbulent kinetic energy using RNG $k-{\varepsilon}$ model was lower than that of standard $k-{\varepsilon}$ model but showed same result for mean flow field quantities. The prediction of the skin friction coefficient using RNG $k-{\varepsilon}$ model showed better trend with experimental data than standard $k-{\varepsilon}$ model result. The inclined flow showed higher velocity and skin friction coefficient than transverse flow because of extra strain rate ($\frac{{\partial}w}{{\partial}y}$). Also, this was why the inclined flow showed higher local heat transfer coefficient than the transverse flow.

  • PDF

Analysis of Empirical Constant of Eddy Viscosity by k-ε and RNG k-ε Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Lee, Jong Sup
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.344-353
    • /
    • 2019
  • The wakes behind a square cylinder were simulated using two-equation turbulence models, $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. For comparisons between the model predictions and analytical solutions, we employed three skill assessments:, the correlation coefficient for the similarity of the wake shape, the error of maximum velocity difference (EMVD) of the accuracy of wake velocity, and the ratio of drag coefficient (RDC) for the flow patterns as in the authors' previous study. On the basis of the calculated results, we discussed the feasibility of each model for wake simulation and suggested a suitable value for an eddy viscosity related constant in each turbulence model. The $k-{\varepsilon}$ model underestimated the drag coefficient by over 40 %, and its performance was worse than that in the previous study with one-equation and mixing length models, resulting from the empirical constants in the ${\varepsilon}-equation$. In the RNG $k-{\varepsilon}$ model experiments, when an eddy viscosity related constant was six times higher than the suggested value, the model results were yielded good predictions compared with the analytical solutions. Then, the values of EMVD and RDC were 3.8 % and 3.2 %, respectively. The results of the turbulence model simulations indicated that the RNG $k-{\varepsilon}$ model results successfully represented wakes behind the square cylinder, and the mean error for all skill assessments was less than 4 %.

난류모델에 따른 건물주위의 유동 예측 (A Prediction of the Flow Characteristics around Buildings with the Turbulent Models)

  • 이승호;여재현;허남건;최창근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.168-171
    • /
    • 2008
  • In the present study, turbulent flows around cubic and L-shape buildings were simulated numerically. Standard ${\kappa}$-$\varepsilon$, RNG ${\kappa}$-$\varepsilon$, LES turbulence models were adopted for the present simulation. The wind pressure coefficients from these results were compared with the available experimental data. The result of RNG ${\kappa}$-$\varepsilon$ and LES turbulent models gave better prediction than that of standard ${\kappa}$-$\varepsilon$ turbulent model which is widely used in the turbulent flow simulation.

  • PDF

초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정 (Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow)

  • 감호동;김정수
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.18-25
    • /
    • 2013
  • 초음속 축소-확대 노즐 유동을 정확하게 해석하기 위하여, 실험치와 해석값 사이의 비교를 통해 난류모델 성능평가를 수행한다. Boussinesq 가정을 적용한 RANS 방정식으로 2차원 노즐 유동을 해석하되, Spalart-Allmaras, RNG k-${\varepsilon}$, 그리고 k-${\omega}$ SST 난류모델을 평가에 사용한다. 각 모델들로 계산된 노즐 벽면의 압력구배 및 충격파 구조는 실험 데이터와 유사한 결과를 보였는데, 그 중에서도 SST 난류모델이 실험값에 가장 근접한 해석결과를 나타내었다.