참고문헌
- Batina, J.T. (1991), "Dynamic mesh for complex-aircraft aerodynamic analysis", AIAA J., 29, 328-331.
- Dawes, W.N. (1993), "Simulating unsteady turbomachinery flows on unstructured meshes which adapt both in time and space", Proc. of the '93 Int. Gas Turbine and Aeroengine Congress and Exposition Cincinnati, Ohio.
- Deniz, S. and Staubli, T. (1998), "Oscillating rectangular and octagonal profiles: modelling of fluid forces", J. Fluid. Struct., 12, 859-882. https://doi.org/10.1006/jfls.1998.0171
- DMI and SINTEF (1993), "Wind-tunnel tests, Storeboelt East Bridge, Tender evaluation, suspension bridge, alternative sections, section model tests", Technical Report 91023-10.00, Rev. 0, Danish Maritime Institute, Lyngby, Denmark.
- Enevoldsen, I., Hansen, S.O., Kvamsdal, T., Pedersen, C. and Thorbek, L.T. (1999), "Compuatational wind simulations for cable-supported bridges", Proc. the 10th Int. Conf. Wind Eng. '99, Copenhagen.
- Frandsen, J.B. and McRobie, F.A. (1999), "Computational aeroelastic modelling to guide long-span bridge crosssection design", Proc. the 10th Int. Conf. Wind Eng. '99, Copenhagen.
- Jenssen, C.B. and Kvelmsdal, T. (1999), "Computational methods for fsi-simulations of slender bridges on high performance computers", in: Computational Methods for Fluid-Structure Interaction, T. Kvalmsdal et al. (editor), Tapir.
- Kuroda, S. (1997), "Numerical aspects of the final design of the 1624 m suspension bridge across the great belt", J. Wind Eng. Ind. Aerod., 67-68, 239-252. https://doi.org/10.1016/S0167-6105(97)00076-7
- Larose, G.L. (1992), "The response of a suspension bridge deck to turbulent wind: the taut strip model approach", M.Eng.Sc. Thesis, The University of Western Ontario, Ontario.
- Larsen, A. and Walther, J.H. (1998), "Discrete vortex simulation of flow around five generic bridge deck sections", J. Wind Eng. Ind. Aerod., 77-78, 591-602. https://doi.org/10.1016/S0167-6105(98)00175-5
- Leonard, A. (1980), "Vortex methods for flow simulation", J. Comp. Phys., 37, 289-335. https://doi.org/10.1016/0021-9991(80)90040-6
- Morgenthal, G. (2000), "Comparison of numerical methods for bridge-deck aerodynamics", MPhil Thesis, University of Cambridge.
- Reinhold, T.A., Brinch, M. and Damsgaard, A. (1992), "Wind tunnel tests for the great belt link", Aerodynamics of Large Bridges (editor Larsen, A.), Proc. the 1st Int. Symp., 1992, Copenhagen, Denmark.
- Scanlan, R.H. and Tomko, J.J. (1971), "Airfoil and bridge deck flutter derivatives", J. Eng. Mech., ASCE, 97, 1717-1737.
- Taylor, I.J. and Vezza, M. (1999), "Analysis of the wind loading on bridge deck sections using a discrete vortex method", Proc. the 10th Int. Conf. on Wind Eng. '99, Copenhagen.
피인용 문헌
- Bridge flutter derivatives based on computed, validated pressure fields vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.02.033
- Bridge deck flutter derivatives: Efficient numerical evaluation exploiting their interdependence vol.136, 2015, https://doi.org/10.1016/j.jweia.2014.11.006
- Numerical bridge deck studies using finite elements. Part I: flutter vol.19, pp.2, 2004, https://doi.org/10.1016/j.jfluidstructs.2003.12.005
- Engenharia do vento computacional e suas aplicações na engenharia civil. Análise aerodinâmica e aeroelástica vol.31, pp.1, 2015, https://doi.org/10.1016/j.rimni.2013.12.005
- Numerical simulations of aeroelastic instabilities to optimize the performance of flutter-based electromagnetic energy harvesters 2017, https://doi.org/10.1177/1045389X17711784
- Methods for flutter stability analysis of long-span bridges: a review vol.170, pp.4, 2017, https://doi.org/10.1680/jbren.15.00039
- fib–news vol.7, pp.1, 2006, https://doi.org/10.1680/stco.2006.7.1.35
- Parallels between wind and crowd loading of bridges vol.371, pp.1993, 2013, https://doi.org/10.1098/rsta.2012.0430
- Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes vol.20, pp.3, 2015, https://doi.org/10.12989/was.2015.20.3.423
- Finite element simulation of the wind action over bridge sectional models: Application to the Guamá River Bridge (Pará State, Brazil) vol.44, pp.3, 2008, https://doi.org/10.1016/j.finel.2007.11.006
- Modelling of inflow-conditions for vortex particle methods to simulate atmospheric turbulence and its induced aerodynamic admittance on line-like bluff bodies vol.32, pp.10, 2018, https://doi.org/10.1080/10618562.2018.1542132
- Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics vol.29, pp.1, 2019, https://doi.org/10.1080/10168664.2018.1522936
- Numerical investigation of the effects of pedestrian barriers on aeroelastic stability of a proposed footbridge vol.96, pp.12, 2002, https://doi.org/10.1016/j.jweia.2008.04.004
- A numerical investigation into the aerodynamic characteristics and aeroelastic stability of a footbridge vol.25, pp.1, 2009, https://doi.org/10.1016/j.jfluidstructs.2008.05.001
- Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows vol.24, pp.3, 2002, https://doi.org/10.12989/was.2017.24.3.267
- Comparison Metrics for Time-Histories: Application to Bridge Aerodynamics vol.146, pp.9, 2020, https://doi.org/10.1061/(asce)em.1943-7889.0001811