DOI QR코드

DOI QR Code

Cellulose Utilization and Protein Productivity of Some Cellulolytic Fungal Co-cultures

  • Eyini, M. (Research centre in Botany, Thiagarajar College(Autonomous)) ;
  • Babitha, S. (Research centre in Botany, Thiagarajar College(Autonomous)) ;
  • Lee, Min-Woong (Department of Biology, Donggak University)
  • Published : 2002.09.30

Abstract

Protein productivity by the cellulolytic fungi, Trichoderma viride(MTCC 800), Chaetomium globosum and Aspergillus terreus was compared in co-culture and mixed culture fermentations of cashewnut bran. Co-cultures were more effective in substrate saccharification, which ranged between $85{\sim}88%$ compared to the $62{\sim}67%$ saccharification shown by the monocultures. Maximum saccharification was induced by T. viride and C. globosum co-culture resulting in the highest 34% release of reducing sugars. The maximum 16.4% biomass protein and the highest protein productivity(0.58%) were shown by T. viride and A. terreus co-culture. A. terreus performed better in co-culture in the presence of T. viride rather than with C. globosum. Among the cellulolytic enzymes, FPase(Filter Paper Cellulase) activity was significantly higher in all the co-cultures and in the mixed culture than in their respective monocultures. Mixed culture fermentation involving all the three fungi was not effective in increasing the per cent saccharification or the biomass protein content over the co-cultures.

Keywords

References

  1. Arora, D. S. 1995. Biodelignification of wheat straw by different fungal associations. Biodegradation 6: 57-60 https://doi.org/10.1007/BF00702299
  2. Canevascini, G. and Gattlen, C. 1981. A comparative investigation of various cellulase assay procedures. Biotechnol. Bioengg 23: 1573-1590 https://doi.org/10.1002/bit.260230716
  3. Elshafei, M., Vega, J. L., Klasson, K. T., Clausen, C. and Gaddy, J. L. 1990. Cellulase and Hemicellulase formation by fungi using com stover as the substrate. Biological wastes 32: 209-218 https://doi.org/10.1016/0269-7483(90)90049-X
  4. Illanes, A. J., Gentina, C. and Marchese, M. P. 1998. Production and stabilization of cellulase from Trichoderma reesei. MIRCEN J. Appl. Microbiol. Biotechnol. 4: 407-413
  5. Lakshmikant, K. and Mathur, S. N. 1990. Cellulolytic activities of Chaetomium globosum on different cellulosic substrates. World J. Microbiol. Biotechnol. 6: 23-26 https://doi.org/10.1007/BF01225350
  6. Lezinou, V., Christakopoulos, P., Li, L. W., Kekos, D. and Macris, J. B. 1995. Study of a single and mixed culture for the direct bioconversion of Sorghum carbohydrates to ethanol. Appl. Microbiol. Biotechnol. 43: 412-415 https://doi.org/10.1007/BF00218442
  7. Lowry, C. H., Rosenbrough, N. J., Farr, A L. and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275
  8. Maheswari, D. K., Jahan, H., Paul, J. and Varma, A. 1993. Wheat straw, a potenitial substrate for cellulase production using Trichoderma reesei. World J. Microbiol. Biotechnol. 9: 120-121 https://doi.org/10.1007/BF00656532
  9. Miller, G. L. 1959. Use of DNS regent for the determination of reducing sugars. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  10. Pandey, A, Soccol, R., Rodriguez Leon, A. and Nigam, P. 2001. Solid State Fermentation in Biotechnology - Fundamentals and Applications. Asiatech Publishers, Inc., New Delhi, pp. 160-161
  11. Puniya, A. K. and Singh, K. 1995. Biochemical changes during the solid substrate fermentation of wheat straw. Indian J. Microbiol. 35: 211-215
  12. Ray. L. G., Pal, A., Ghosh, A. and Chattopadhyay, P. 1993. Cellulases and $\beta$-glucosidase from Aspergillus niger and saccharification of some cellulosic wastes. World J. Microbiol. Biotechnol. 8: 85-94
  13. Sadana, J. C. and Patil, R. V. 1985. The purification and properties of cellobiose dehydrogenase from Sclerotium rolfsii and its role in cellulolysis. J. Gen. Microbiol., 13: 1917-1923
  14. Shamala, T. R. and Sreekantiah, K. R. 1986. Production of cellulases and D-xylanase by some selected fungal isolates. Enzyme and Microb. Technol. 8: 178-182 https://doi.org/10.1016/0141-0229(86)90109-2
  15. Srinivasan, M. C. and Laxman, R. S. 1988. Microbial cellulases: A status report on enzyme production and technology aspects. Indian J. Micribiol. 28: 266-275
  16. Tabassum, R., Rajoka, M. I. and Malik, A. 1990. Production of cellulases and hemicellulases by an anaerobic mixed culture from lignocellulosic biomass. World J. Microbiol Biotechnol. 6: 39-45 https://doi.org/10.1007/BF01225353
  17. Tanaka, H., Kurosawa, H. and Murakami, H. 1986. Ethanol production from starch by a co-immobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis. Biotechnol. Bioengg 28: 1761-1768 https://doi.org/10.1002/bit.260281202
  18. Tengerdy, R. P. 1996.Cellulase production by solid state fermentation. J. Sci. Ind. Res. 55: 313-316
  19. Updegraff, C. M. 1969. Semi micro determination of cellulose in biological materials. Anal. Biochem. 32: 420- 424 https://doi.org/10.1016/S0003-2697(69)80009-6
  20. van Wyk, J. P. H. 1998. Paper hydrolysis by cellulase from Pencillium funiculosum and Trichoderma viride. Bioresource Technol. 63: 275-277 https://doi.org/10.1016/S0960-8524(97)00142-9
  21. Zabala, I., Ferrer, A, Ledesma, A. and Aiello, C. 1994. Microbial protein production by submerged fermentation of mixed cellulolytic cultures. Adv. Bioprocess Eng, Kluwer Academic Publishers, The Netherlands, pp. 455-460

Cited by

  1. Raw Starch Degrading Amylase Production by Various Fungal Cultures Grown on Cassava Waste vol.34, pp.3, 2006, https://doi.org/10.4489/MYCO.2006.34.3.128
  2. Co-culture: A great promising method in single cell protein production vol.9, pp.2, 2014, https://doi.org/10.5897/BMBR2014.0223