• Title/Summary/Keyword: Chaetomium globosum

Search Result 27, Processing Time 0.029 seconds

Deterioration of Fibers and Their Products by Fungi (Part II) -Damage of Cellulosic Fabrics by Fungi- (사상균에 의한 섬유 및 섬유제품의 소화에 관하여 (제 2포) -사상균에 의한 면직물의 손해도-)

  • 김효은
    • Journal of the Korean Home Economics Association
    • /
    • v.19 no.4
    • /
    • pp.9-15
    • /
    • 1981
  • damages of cotton cloth and characteristics of fabroid degradation were studied by Chaetomium globosum and Aspergillus niger which presupposed as powerful erosive fungi to cellulose fiber by means of tensile strength. The results obtained are as follows: 1. the growth(rate) of fungi in malt extract agar was superior to potato agar for two weeks. 2. Chaetomium globosum showed mostly severe damage t the cotton cloth in malt extract agar media at pH 4.5. 3. Tensile strength was reduced with time by Aspergillus niger-coenzyme and Chaetomium globosum-coenzyme reaction. In comparison with Chaetomium globosum and Aspergillus niger, the former weaken tensile strength about 15.8% and the latter enfeebled 10.0% after 124 hours. 4. after 30 days the breeding of fungi in pH 4.5 malt extract agar media, critical damage of cotton cloth was observe, I. e., 92.4% damage by chaetomium globosum and 74.9% lose by aspergillus nige respectively.

  • PDF

A Study on Degradation of Butachlor by a Soil Fungus, Chaetomium globosum -[Part I] Identification of major metabolites by GLC-MS- (토양사상균(土壤絲狀菌) Chaetomium globosum에 의(依)한 Butachlor의 분해(分解)에 관(關)한 연구(硏究) (제1보(第一報)) -주요대사산물의 GLC-MS에 의한 확인-)

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 1978
  • In an effort to elucidate degradation mechanisms of an acetanilide herbicide, Butachlor, by soil microorganisms, a common soil fungus, Chaetomium globosum which is known to be powerful was selected and incubated in a Butachlor-contained medium. The results obtained from the resulting metabolites are as follows: (1) Dechlorination from Butachlor occurred very easily, remaining almost constant after 180 hrs. of incubation. (2) More than 10 metabolites were isolated and characterized, of which the metabolites, m/e 205, 177, 223, 182, and 206 were the main products. (3) In this paper, the structures and pathways of formation of metabolites, m/e 206, 182, 223, 225, and 189 were tentatively proposed.

  • PDF

Biological Control of Phytophthora palmivora Causing Root Rot of Pomelo Using Chaetomium spp.

  • Hung, Phung Manh;Wattanachai, Pongnak;Kasem, Soytong;Poaim, Supatta
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • Phytophthora diseases have become a major impediment in the citrus production in Thailand. In this study, an isolate of Phytophthora denominated as PHY02 was proven to be causal pathogen of root rot of Pomelo (Citrus maxima) in Thailand. The isolate PHY02 was morphologically characterized and identified as Phytophthora palmivora based on molecular analysis of an internal transcribed spacer rDNA sequence. This work also presents in vitro evaluations of the capacities of Chaetomium spp. to control the P. palmivora PHY02. As antagonists, Chaetomium globosum CG05, Chaetomium cupreum CC3003, Chaetomium lucknowense CL01 inhibited 50~61% mycelial growth, degraded mycelia and reduced 92~99% sporangial production of P. palmivora PHY02 in bi-culture test after 30 days. Fungal metabolites from Chaetomium spp. were tested against PHY02. Results showed that, methanol extract of C. globosum CG05 expressed strongest inhibitory effects on mycelial growth and sporangium formation of P. palmivora PHY02 with effective dose ED50 values of $26.5{\mu}g/mL$ and $2.3{\mu}g/mL$, respectively. It is interesting that C. lucknowense is reported for the first time as an effective antagonist against a species of Phytophthora.

Cellulose Utilization and Protein Productivity of Some Cellulolytic Fungal Co-cultures

  • Eyini, M.;Babitha, S.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.30 no.3
    • /
    • pp.166-169
    • /
    • 2002
  • Protein productivity by the cellulolytic fungi, Trichoderma viride(MTCC 800), Chaetomium globosum and Aspergillus terreus was compared in co-culture and mixed culture fermentations of cashewnut bran. Co-cultures were more effective in substrate saccharification, which ranged between $85{\sim}88%$ compared to the $62{\sim}67%$ saccharification shown by the monocultures. Maximum saccharification was induced by T. viride and C. globosum co-culture resulting in the highest 34% release of reducing sugars. The maximum 16.4% biomass protein and the highest protein productivity(0.58%) were shown by T. viride and A. terreus co-culture. A. terreus performed better in co-culture in the presence of T. viride rather than with C. globosum. Among the cellulolytic enzymes, FPase(Filter Paper Cellulase) activity was significantly higher in all the co-cultures and in the mixed culture than in their respective monocultures. Mixed culture fermentation involving all the three fungi was not effective in increasing the per cent saccharification or the biomass protein content over the co-cultures.

Fungi Detected on Imported Seeds in 1985 (1985년도(年度) 수입(輸入) 종자(種子)에서 조사(調査)된 균류(菌類))

  • Han, Sang-Jin;Chung, Yang-Won;Lee, Eung-Kwon
    • The Korean Journal of Mycology
    • /
    • v.14 no.2
    • /
    • pp.179-183
    • /
    • 1986
  • This survey was conducted to identify the fungal pathogens on the imported seeds during two months from September to October in 1985. Twenty-four species of fungi were detected from six kinds of the imported seeds and the following eight species of fungi have not been reported before in Korea.

  • PDF

Descriptive Reports on Some Soil-Inhabiting Fungi in Korea

  • Lee, Seon-Ju
    • Mycobiology
    • /
    • v.29 no.2
    • /
    • pp.90-95
    • /
    • 2001
  • During the study of microbial structures in root-regions of tomato and red pepper from fields, various soil-inhabiting fungi were isolated with the dilution plate technique. Among them an ascomycete, Emericellopsis mirabilis and three hyphomycetes, Gliocladium solani, Humicola veronae and Verticillium chlamydosporium are presented for the first time in Korea along with Talaromyces trachyspermus, Chaetomium globosum and Doratomyces microsporus.

  • PDF

Studies on Cellulolytic Enzymes Produced by Chaetomium globosum -Part . 1 ; Properties of Crude Cellulolytic Enzymes- (Chaetomium globosum 이 생성(生成)하는 Cellulose 분해효소(分解酵素)에 관(關)한 연구(硏究) -제1보(第1報) 조효소(粗酵素)의 성질(性質)-)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.23-31
    • /
    • 1968
  • We have obtained the following results, at the production of cellulase of Chaetomium globosum and its properties of crude enzyme. 1. At the production of enzyme, wheat bran solid culture was more active than surface or shaking culture. 2. The production of enzyme was maximum between the eighth and the tenth days, but slightly decreased thereafter. 3. The optimum condition of the reactions in saccharification with CMC were obtained the following results. 1) The optimum pH was within the range of from 4.0 to 5.0 and stable pH range was within 3.5 to 6.5. 2) The optimum temperature was $40^{\circ}C$ and thermal stability was below $50^{\circ}C$ and completely inactivated at $70^{\circ}C$ 4 Dialyzed crude enzyme was activated by $Mn^{++}\;Mg^{++}\;Fe^{++}\;and\;Mo^{++}\;respectively\;but\;Hg^{++}$ was inhibited its enzyme action.

  • PDF

Phyllosphere and Phylloplane Fungi of Banana Cultivated in Upper Egypt and their Cellulolytic Ability

  • El-Said, A.H.M.
    • Mycobiology
    • /
    • v.29 no.4
    • /
    • pp.210-217
    • /
    • 2001
  • Seventy-three species and five varieties belonging to 36 genera were collected from leaf surfaces of banana plants on glucose and cellulose-Czapek's agar at $28^{\circ}C$. The results obtained from leaf surfaces(phyllosphere and phylloplane) were basically similar on the two types of media and the most common fungi were Alternaria, Aspergillus, Chaetomium, Cladosporium, Cochliobolus, Curvularia, Gibberella, Memnoniella, Mycosphaerella, Setosphaeria and Stachybotrys. The monthly counts of these fungi were irregularly fluctuated giving maxima at various months. Chaetomium globosum was in the top of fungi in producing both exo- and endo-$\beta$-l,4-glucanases among the 34 tested isolates obtained from leaves(phylloplane) on cellulose-Czapek's agar. Maximum production of these enzymes by C. globosum was 6 and 8 days after incubation at $25^{\circ}C$ with culture medium containing wheat bran as a carbon source and peptone as a nitrogen source and initially adjusted to pH 6.

  • PDF

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.

A Study on the Degradation of 3,4-Dichloroaniline by a Soil Fungus, Chaetomium globosum (Part I) -With Special Emphasis on Acetylation- (토영사상균(土壤絲狀菌) Chaetomium globosum에 의(依)한 3,4-Dichloroaniline의 변화(變化)에 관(關)한 연구(硏究) 제1보(第一報) -특(特)히 Acetylation을 중심(中心)으로-)

  • Lee, Jae-Koo;Kim, Ki-Cheol
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.197-203
    • /
    • 1978
  • In order to investigate mechanisms related to the microbial degradation of 3,4-dichloroaniline, it was incubated with a soil fungus, Chaetomium globosum and the following results were obtained. (1) 3,4-Dichloroacetanilide turned out to be the major metabolite, indicating that acetylation is the major scheme. (2) The presence of trace amounts of 3,4-dichloronitrobenzene, 3,3', 4,4'-tetrachloroazo-benzene, 3,4-dichloroaniline is suggestive of the aromatic amine oxidation as the minor pathway. (3) Other metabolites with m/e 112, 114, and 279 were also isolated, but their identities are under investigation. (4) Dechlorination occurring during incubation indicates the possibility of forming hydroxylated and other metabolites.

  • PDF