DOI QR코드

DOI QR Code

대면적 레이저 다이오드의 필라멘테이션과 α-factor

Filamentation and α-factor of broad area laser diodes

  • 한일기 (한국과학기술연구원 나노소자연구센터) ;
  • 허두창 (한국과학기술연구원 나노소자연구센터) ;
  • 이정일 (한국과학기술연구원 나노소자연구센터) ;
  • 이주인 (한국표준과학연구원)
  • Han, Il-Ki (Nano Devices Research Center Korea Institute of Science and Technology) ;
  • Her, Du-Chang (Nano Devices Research Center Korea Institute of Science and Technology) ;
  • Lee, Jung-Il (Nano Devices Research Center Korea Institute of Science and Technology) ;
  • Lee, Joo-In (Nanosurface Group, Korea Research Institute of Standards and Science)
  • 발행 : 2002.08.01

초록

Linewidth enhancement factor ($\alpha{-factor}$) 값이 2와 4인 두 종류의 1.55${\mu}m$ 다층양자우물(Multi-Quantum Well; MQW) 대면적 레이저 다이오드를 제작하였다. 제작된 레이저 다이오드의 far-field 측정 결과 $\alpha{-factor}$ 값이 4일 때 보다 2인 구조에서 반폭치(Full Width at Half Maximum; FWHM)와 필라멘테이션(filamentation)이 감소되었다. 주입전류의 증가에 따라 두 종류 모두 far-field의 FWHM의 증가 현상이 나타났고 이는 filament spacing이 감소하였기 때문으로 설명된다.

1.55 ${\mu}m$multi-quantum well (MQW) broad area laser diodes with different linewidth enhancement factors ($\alpha{-factor}$) of 2 and 4 were fabricated. The far-fields of the laser diodes were measured. It was observed that the full width at half maximum (FWHM) of the far-fields and the filamentations were reduced in the laser diodes for which the value of the $\alpha{-factor}$ was small. As injection current increased, the FWHM of the far-field also increased regardless of the a-factor. This phenomenon was explained by reduction of filament spacing as injection current increased.

키워드

참고문헌

  1. W. P. Latham, W. T. Cooley, G. J. Vansuch, and T. C. Salvi, “High-Power Semiconductor Lasers: Applications and Progress,” in Advanced High-Power Lasers, SPIE, Osaka, Japan , 1999, pp. 34-44.
  2. J. R. Marciante and G. P. Agrawal, “Nonlinear mechanisms of filamentation in broad-area semiconductor lasers,” IEEE J. Quantum Electron., vol. 32, no. 4, pp. 590-596, 1996. https://doi.org/10.1109/3.488831
  3. Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical simulation of broad-area high-power semiconductor laser amplifiers,” IEEE J. Quantum. Electron., vol. 33, no. 12, pp. 2240-2254, 1997. https://doi.org/10.1109/3.644107
  4. B. Zhao, T. R. Chen, S. Wu, Y. H. Zhuang, Y. Yamada, and A. Yariv, “Direct measurement of linewidth enhancement factors in quantum well lasers of different quantum well barrier heights,” Appl. Phys. Lett., vol. 62, no. 14, pp. 1591-1593, 1993. https://doi.org/10.1063/1.108647
  5. J. Stohs, D. J. Gallant, D. J. Bossert, and S. R. J. Brueck, “Epitaxial structure dependence of the linewidth enhancement factor in GaAs and inGaAs quantum well lasers,” Proc. SPIE, vol. 2994, pp. 542-551, 1997. https://doi.org/10.1117/12.275604
  6. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys., vol. 46, no. 3, pp. 1296-1306, 1975. https://doi.org/10.1063/1.321696
  7. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys., vol. 46, no. 3, pp. 1296-1306, 1975. https://doi.org/10.1063/1.321696