Combustion Characteristics of the Miao-Gravity Condition

미소중력장에서의 연소특성 연구

  • Lee, Keun-Oh (Department of Safety Engineering, Seoul National University of Technology) ;
  • Lee, Kyeong-Ook (ARGONNE National Laboratory)
  • 이근오 (서울산업대학교 안전공학과) ;
  • 이경욱 (미국 국립 ARGONNE 연구소)
  • Published : 2002.12.01

Abstract

The transient soot distributions within the region bounded by the droplet surface and the flame were measured using a full-filed light extinction technique and subsequent tomographic inversion using Abel transforms. The soot volume fraction results for n-heptane droplets represent the first quantitative assessment of the degree of sooting for isolated droplets burning under microgravity condition. The absence of buoyancy(which produces longer residence times) and the effects of thermophoresis produce a situation in which a significant concentration of soot is produced and accumulated into a soot-cloud. Results indicate that indeed the soot concentration within the microgravity droplet flames(with maximum soot volume fractions as high as ~60ppm) are significantly higher than corresponding values that are reports for normal-gravity flames. This increase in likely due to longer residence times and thermophoretic effects that manifested under microgravity conditions.

Keywords

References

  1. Faeth G. M.,1977, Pmg. Energy and Comb. Sci., Vol. 3, p. 191 https://doi.org/10.1016/0360-1285(77)90012-0
  2. Faeth G. M.,1994, Science requirements document for laminar soot processes, NASA
  3. Spalding D. B., 1953, Fourth Symposium(Int.) on Combustion, The Combustion Institute, pp. 847-864
  4. Godsave G. A. E., 1953, Fourth Symposium(Int.) on Combustion, The Combustion Institute, pp. 818-830
  5. Law C. K., 1976, Combustion and Flame, Vol. 26, pp. 17-22 https://doi.org/10.1016/0010-2180(76)90053-5
  6. Hubbaid G. L., Denny, V. E.and Mills A. F., 1975, Int. J. Heat Mass Transfer, Vol. 18, pp. 1003-1008 https://doi.org/10.1016/0017-9310(75)90217-3
  7. Waldmaim L. and Schmitt K. H., 1966, Aerosol Science, Chapter VI in Davies, Academic Press N.Y
  8. Friedlander, S. K, 1977, Smoke, Dust and Haze, Wiley and Sons N.Y
  9. Shaw B. D., Diyer F. L. and Williams F. A., 1988, Acta Astmnautica 17(11/12), pp. 1195-1202 https://doi.org/10.1016/0094-5765(88)90008-2
  10. Dasch C. J., 1992, Applied Optics, Vol. 31, p.146
  11. 박영철, 윤두표, 박동성, 김득진, 김광영, 'X선 프렉토그래피법을 이용한 금속복합재료의 피로손상 해석에 관한 연구,' 비파괴검사학회지, Vol. 18, No. 3, pp. 172-179, 1998
  12. 석창성, 구재민, 김동중, 안하늘, 박은수, '1Cr-1Mo-0.25V 강의 열화 거동에 관한 연구,' 산업안전학회지, Vol. 15, No. 4, pp. 8-13, 2000
  13. A. M. Adbel-Latif, J. M. Corbett and D. M. R-Taplin, 'Analysis of Carbides Fonned During Accelerated Aging of 2.25Cr-1Mo Steel,' Met. Sci., Vol. 16, pp. 90-96. 1982 https://doi.org/10.1179/030634582790427181
  14. K. E. Stahlkopf, R. E. Smith, W. L. Server and R. A. Wullaert, ASTM STP 601, pp. 291-307, 1975
  15. N. Gope, A. Chatterjee, T. Mukherjee and D. S. Sanna, 'Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 2.25Cr-1Mo Steel,' Metall. Tians., Vol. 24A, pp. 315-326, 1993
  16. J. W. Byeon, 'Nondestructive Evaluation of Microstructures and Mechanical Properties of Ni Base Superalloy and 2.25Cr-1Mo Steel Degraded at FKgh Temperature,' Ph. D thesis, Korea University, 2001