the Combination of Wavelet with Boundary Element Method for the Efficient Solution of Maxwell's Equations

Maxwell 방정식의 효율적인 풀이를 위한 경계요소법과 웨이브렛의 결합

  • Kim, Hyun-Jun (School of Information and Communication Engineering, Inha University) ;
  • Lee, Seung-Gol (School of Information and Communication Engineering, Inha University) ;
  • O, Beom-Hoan (School of Information and Communication Engineering, Inha University) ;
  • Lee, El-Hang (School of Information and Communication Engineering, Inha University)
  • 김현준 (仁荷大學敎 情報通信 工學部 마이크로 포토닉스 硏究 센터) ;
  • 이승걸 (仁荷大學敎 情報通信 工學部 마이크로 포토닉스 硏究 센터) ;
  • 오범환 (仁荷大學敎 情報通信 工學部 마이크로 포토닉스 硏究 센터) ;
  • 이일항 (仁荷大學敎 情報通信 工學部 마이크로 포토닉스 硏究 센터)
  • Published : 2002.11.01

Abstract

The wavelet transform is combined with the boundary element method (BEM), to solve efficiently the Maxwell's equation and the proposed method is applied to the electromagnetic problem for the analysis of topological effects of phase-shifting masks. The accuracy of the module developed was verified by comparison with both analytic solutions and published results. In addition, it was found that the boundary element method in combination with the wavelet matrix transform would be more efficient than the conventional methods based on the BEM in views of the calculation speed and the usage of computer memory.

Maxwell 방정식을 효율적으로 풀기 위해 웨이브렛 행렬 변환(wavelet matrix transformation)과 경계요소법(Boundary Element Method)을 결합하는 방법을 제안하였으며, 2차원 위상변이 마스크(phase- shifting mask) 문제에 적용하였다. 계산 결과를 해석적인 해 및 참고문헌의 결과와 비교함으로써 구현된 모듈의 정확도를 검증하였으며, 제안된 방법이 경계요소법만을 적용한 경우에 비해 연산 시간과 메모리 사용 측면에서 효율적임을 확인하였다.

Keywords

References

  1. E. B. Becker, G. F. Carey, and J. T. Oden, Finite Elements An Introduction: Volume 1, Prentice Hall, pp. 175-221, 1981
  2. M. J. Fagan, Finite Element Analysis : Theory and Practice, Longman, pp. 39-84, 1992
  3. A. K. Wong and A. R. Neureuther, 'Polarization effects in mask transmission', SPlE vol. 1674 pp. 193-200, 1992 https://doi.org/10.1117/12.130320
  4. Shin Kagani & Ichiro Fukai, 'Application of Boundary-Element Method to Electromagnetic Field Problems', IEEE, vol.32, No.4, pp 455-461 1984
  5. J. Trevelyan, 'Boundary Elements for Engineering-Theory and Applications', Computational Mechanics Publications, pp 4-25, 49-175, 96-97, 1994
  6. A.A. Becker, 'The Boundary element method in Engineering-A complete cource', McGRAW-HILL international editions, pp 6-90, 161-294, 1992
  7. B. Z. Steinberg and Y. Leviatan, 'On the Use of Wavelet Expansion in the Method of Moments', IEEE Trans. Antennas Propagat., vol. 41, no. 5, pp. 610-619, May, 1993 https://doi.org/10.1109/8.222280
  8. Xiang and Y. Lu, 'An Effective Wavelet Matrix Transform Approach for Efficient Solutions of Electromagnetic Integral Equations', IEEE Trans. Antennas Propagat., vol. 45, no. 8, pp. 1205-1213, August, 1997 https://doi.org/10.1109/8.611238
  9. Z. Xiang and Y. Lu, 'A Study of the Fast Wavelet Transform Method in Computational Electromagnetics', IEEE Trans. Magnetics, vol. 34, no. 5, pp. 3323-3326, September 1998 https://doi.org/10.1109/20.717781
  10. R. L. Wagner and W. C. Chew, 'A Study of Wavelets for the Solution of Electromagnetic Integral Equations', IEEE Trans. Antennas Propaga, vol. 43, no. 8, pp. 802-810, Aug. 1995 https://doi.org/10.1109/8.402199
  11. 이동훈, 김현준, 이승걸, 이종웅, '경계요소법을 이용한 위상 변이 마스크의 단차 효과 분석', 대한전자공학회 논문지, 제36권 D편, 제11호, pp. 931-942, Nov. 1999
  12. K. D. Lucas, A. J. Strojwas, K. K. Low, and Chi-Min Yuan, 'Intensity optimization for phase-shifting Masks', SPIE, vol. 1927, pp. 438-449, 1993 https://doi.org/10.1117/12.150442
  13. C. Pierrat, A. Wong, and S. Vaidya, 'Phaseshifting mask topography effects on lithographic image quality', SPIE vol. 1927, pp. 28-41, 1993 https://doi.org/10.1117/12.150446
  14. T. A. Brunner and R. A. Ferguson, 'Approximate models for resist processing effects', SPIE vol. Z726, pp. 198-206, 1996 https://doi.org/10.1117/12.240906
  15. G. Wang, 'A Hybrid Wavelet Expansion and Boundary Element Analysis of Electromagnetic Scattering from Conducting Objects', IEEE Trans. Antennas Propaga, vol. 43, no. 2, pp. 170-178, February 1995 https://doi.org/10.1109/8.366379
  16. M. G. Moharam and T. K. Gaylord, 'Rigorous coupled-wave analysis of planar grating diffraction', J. Opt. Soc. Am, vol. 71, no. 7, pp. 811-818, 1981 https://doi.org/10.1364/JOSA.71.000811
  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C : The Art of Scientific Computing, 2nd ed. New York: Cambridge Univ. Press, 1992
  18. I. Daubechies, 'Orthogonal bases of compactly supported wavelets', Comm. Pure Applied Math., 41, 1991, pp 909-996, 1984 https://doi.org/10.1002/cpa.3160410705