Improvement of Relevance Feedback for Image Retrieval

영상 검색을 위한 적합성 피드백의 개선

  • Yoon, Su-Jung (Department of Electronic Engineering, Dongguk University) ;
  • Park, Dong-Kwon (Department of Electronic Engineering, Dongguk University) ;
  • Won, Chee-Sun (Department of Electronic Engineering, Dongguk University)
  • Published : 2002.07.01

Abstract

In this paper, we present an image retrieval method for improving retrieval performance by fusion of probabilistic method and query point movement. In the proposed algorithm, the similarity for probabilistic method and the similarity for query point movement are fused in the computation of the similarity between a query image and database image. The probabilistic method used in this paper is suitable for handling negative examples. On the other hand, query point movement deals with the statistical property of positive examples. Combining these two methods, our goal is to overcome their shortcoming. Experimental results show that the proposed method yields better performances over the probabilistic method and query point movement, respectively.

본 논문에서는, 확률적 방법과 질의 위치 이동 방법을 융합하여 검색 성능을 향상시키는 영상검색 방법을 제안한다. 제안한 알고리즘은, 질의 영상과 데이터베이스 영상 사이의 유사도 계산에서, 확률적 방법의 유사도와 질의 위치 이동 방법의 유사도를 융합한다. 본 논문에서 이용된 확률적 방법은 부정적 예제들을 다루기에 적합하다. 반면에, 질의 위치 이동 방법은 긍정적예제의 통계적인 특성을 다룬다. 본 논문의 목적은 이러한 두 방법을 융합함으로써, 각각의 방법이 가지고 있는 단점을 극복하는 것이다. 실험결과는 제안한 방법이 확률적 방법과 질의 위치 이동 방법을 각각 적용한 경우보다 더 나은 성능을 나타낸다는 것을 보여준다.

Keywords

References

  1. Zhong Su, Hongjiang Zhang, Shaoping Ma, 'Using Bayesian Classifier in Relevant Feedback of Image Retrieval,' in Proc. IEEE Int. Conf., 2000 https://doi.org/10.1109/TAI.2000.889879
  2. Y. Rui, T. S. Huang, and S. Mehrotra, 'Content-based image retrieval with relevance feedback in MARS,' in Proc. IEEE int. Conf. on Image Proc., 1997.
  3. J.J.Rocchio: 'Relevance Feedback in Information Retrieval,' In G.Salton ed., The SMART Retrieval System - Experiments in Automatic Document Processing, pp. 313-323, Prentice Hall, Englewood Cliffs, N.J., 1971
  4. P. Schauble. Multimedia Information Retrieval: Content-Based Information Retrieval from Large Text and Audio Databases, Kluwer, Boston, 1997
  5. Y. Ishikawa, R. Subramanya, and C. Faloutsos, 'Mindreader: Query databases through multiple examples,' in Proc. Of the 24th VLDB Conference, New York, 1998.
  6. Roberto Brunelli, Ornella Mich, 'Image Retrieval by Examples,' IEEE Transactions on Multimedia, Vol. 2, No. 3, pp. 164-171, September 2000 https://doi.org/10.1109/6046.865481
  7. Y. Rui, T. S. Huang 'Relevance Feedback: A Power Tool for Interactive Content-Based Image Retrieval,' IEEE Circuits and systems for Video technology, Vol. 8, No. 5, 1998
  8. 'Color and Texture Core Experiments,' ISO/IEC/JTC1/SC29/WG11 : document no. N3090, Maui, Dec. 1999
  9. 'CD 15938-3 Multimedia Content Description Interface - Part 3 Visual,' ISO/IEC JTC1/SC29/WG11/W3703, La Baula, Oct. 2000
  10. D.K. Park, Y.S. Jeon, C.S. Won, S-J Park, 'Efficient use of local edge histogram descriptor,' Int. Workshop on Standards, Interoperability and Practices, ACM, pp. 52-54, Marina del Rey, CA, Nov. 4, 2000