소형화한 주파수 가변 마이크로파 밴드갭 구조로 응용된 마이크로스트립 링

Microstrip Ring as a Compact Tunable Microwave Bandgap Structure

  • 장미영 (亞洲大學校 電子工學部) ;
  • 기철식 (亞洲大學校 電子工學部) ;
  • 박익모 (亞洲大學校 電子工學部) ;
  • 임한욱 (亞洲大學校 電子工學部) ;
  • 한해욱 (浦港工科大學校 電氣컴퓨터工學部) ;
  • 이정일 (韓國科河技術硏究院 光電子硏究室)
  • 발행 : 2002.09.01

초록

본 논문에서는 협소한 갭이 있는 마이크로스트립 링의 특성을 분석하였으며, 이를 주파수가변(tunable) 마이크로파 밴드갭(Microwave bandgap:MBG) 구조로 제안하였다. 마이크로파 밴드갭(MBG)의 중심주파수는 링의 반지름에 의해 결정되었으며 링 공진기의 홀수 모드에 해당하는 주파수영역에서만 저지대역이 존재하였다. 제안된 마이크로스트립 MBG 링에서 저지대역은 링에 있는 협소한 갭에서 전자기파의 반사로 인해 형성되며 갭 사이에 부착한 리액티브 성분의 값을 변화시킴으로써 저지대역이 형성되는 영역을 결정 할 수 있다. 갭 사이에 부착한 캐패시터는 저지대역의 중심주파수를 낮은 주파수영역으로 이동시켰고 인덕터는 저지대역의 중심주파수를 높은 주파수영역으로 이동시키는 결과를 보였다. 이렇게 갭 사이에 배랙터(varactor)를 부착한 마이크로스트립 MBG 링은 마이크로파 스위치로 유용하게 사용 할 수 있을 것이다.

In this paper, microstrip ring with a narrow gap is characterized and used as a tunable microwave bandgap (MBG) structure. The center frequency of MBG is mainly determined by the mean circumference of the ring and coincides with odd mode resonance frequency of the ring resonator. The stop band formation by the proposed microstip MBG ring is due to the reflection of electromagnetic waves at the narrow gap introduced in the ring, and the reactive component mounted on the gap makes the stop band vary according to its value. The mounting of capacitor (inductor) is observed to decrease (increase) the center frequency of the stop band. The varactor-mounted microstrip MBG ring is expected to be useful in microwave switches and microwave amplifier circuits.

키워드

참고문헌

  1. Yablonovitch, E., 'Phys. Rev. Lett,' Vol. 58, pp. 2059,1987 https://doi.org/10.1103/PhysRevLett.58.2059
  2. M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, 'Simulated and measured results from a duroid-based planar MBG cavity resonator filter,' IEEE Microwave Guided Wave Lett., vol. 10, no. 12, pp. 528-530. Dec. 2000 https://doi.org/10.1109/75.895092
  3. W. J. Chappell, M. W. Little, L. P. Katehi, 'High-isolation planar filters using EBG substrates,' IEEE Microwave Wireless Components Lett., vol. 11, no. 6, pp. 246-248, June 2001 https://doi.org/10.1109/7260.928927
  4. A. Oliner, 'Periodic structures and photonicband-gap terminology: historical perspectives,' in Proc. 29th Eur. Microwave Conf., Munich, Germany, pp. 295-298, Oct. 1999
  5. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, 'High-impedance electromagnetic surfaces with a forbidden frequency band,' IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999 https://doi.org/10.1109/22.798001
  6. Y. Hao and C. G. Parini, 'Isolation enhancement of PBG microstrip diplexer patch antenna,' in 2001 IEEE AP-S Dig., pp. 86-89, Apr. 2001
  7. V. Radisic, Y. Qian, and T. Itoh, 'Broad-band power amplifier using dielectric photonic bandgap structure,' IEEE Microwave Guided Wave Lett., vol. 8, no. 1, pp. 13-14 Jan. 1998 https://doi.org/10.1109/75.650973
  8. Y. Ji, X S. Yao, and L. Maleki, 'Hgh-Q whispering gallery mode dielectric resonator bandpass filter with nicrostrip fine coupling and photonic bandgap mode-suppression,' IEEE Microwave Guided Wave Lett., vol. 10, no. 8, pp. 310-312, Aug. 2000 https://doi.org/10.1109/75.862224
  9. S. S. Oh, C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, 'Duplexer using microwave photonic band gap structure,' Appl. Phys. Lett., vol. 76, no. 16, pp. 2301-2303, Feb. 2000 https://doi.org/10.1063/1.126326
  10. V. Radisic, Y. Qian, R. Coccioli and T. Itoh, 'Novel 2-D Photonic Bandgap Structure for Microstrip Lines,' IEEE Microwave Guided Wave Lett., vol. 8, no. 2, 1998 https://doi.org/10.1109/75.658644
  11. C. S. Kee, J. E. Kim, H. Y. Park, and H. Lim, 'Roles of wave impedance and refractive index in photonic crystals with magnetic and dielectric properties,' IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2148-2150, Nov. 1999 https://doi.org/10.1109/22.798012
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, 1995
  13. T. Kim and C. Seo, 'A novel photonic bandgap structure for low-pass filter of wide stopband,' IEEE Microwave Guided Wave Lett., vol. 10, no. 1, pp. 13 - 15, Jan. 2000 https://doi.org/10.1109/75.842072
  14. D. Ahn, J. S. Park, C. S. Kim, Y. Qian, and T. Itoh, 'A design of the low-pass filter using the novel microstrip defected gound structure,' IEEE Tran, Microwave Theory Tech., vol. 49, no. 1, pp. 86-93, Jan. 2001 https://doi.org/10.1109/22.899965
  15. Q. Xue, K. M. Shum, and C. H. Chan, 'Novel oscillator incorporating a compact microstrip resonant cell,' IEEE Microwave Wireless Components Lett., vol. 11, no. 5, pp. 202-204, May 2001 https://doi.org/10.1109/7260.923028
  16. K. Chang, Microwave Ring Circuits and Antennas, John Wiley & Sons, Inc., New York, pp. 85-112, 1996
  17. J. W. Sheen, 'A compact semi-lumped low-pass filter for harmonics and spurious suppression,' IEEE Microwave Guided Wave Lett., vol. 10, no. 3, pp. 92-93, Mar. 2000 https://doi.org/10.1109/75.845707