A Motion Vector Re-Estimation Algorithm for Image Downscaling in Discrete Cosine Transform Domain

이산여현변환 공간에서의 영상 축소를 위한 움직임 벡터 재추정

  • Kim, Woong-Hee (National Security Research Institute, ETRI) ;
  • Oh, Seung-Kyun (Department of Electrical Engineering and Computer Science, Division of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Hyun-Wook (Department of Electrical Engineering and Computer Science, Division of Electrical Engineering, Korea Advanced Institute of Science and Technology)
  • 김웅희 (韓國電子通信硏究院 附設 國家保安技術硏究所) ;
  • 오승균 (韓國科學技術院 電子電算學科 電氣 및 電子工學) ;
  • 박현욱 (韓國科學技術院 電子電算學科 電氣 및 電子工學)
  • Published : 2002.09.01

Abstract

A motion vector re-estimation algorithm for image downscaling in discrete consine transform domain is presented. Kernel functions are difined using SAD (Aum of Absolute Difference) and edge information of a macroblock. The proposed method uses these kernel functions to re-estimate a new motion vector of the downscaled image. The motion vectors from the incoming bitstream of transcoder are reused to reduce computation burden of the block-matching motion estimation, and we also reuse the given motion vectors. Several experiments in this paper show that the computation efficiency and the PSNR (Peak Signal to Noise Ratio) and better than the previous methods.

이 논문에서는 이산여현변환 공간에서 영상의 크기를 줄이는 변환부호화 과정에서의 움직임 벡터 (motion vector) 재추정을 위한 방법을 제안하였다. 제안된 방법에서는 영상 사이의 SAD (Sum of Absolute Difference)와 매크로 블록의 에지 정보를 이용하여 커널 함수를 정의하고, 그것을 이용해서 축소된 영상에서의 새로운 움직임 벡터를 재추정하였다. 변환부호화기에서는 속도의 효율성을 위해서 변환부호화기의 입력의 화면 간 (inter-frame) 정보에서 얻을 수 있는 기존의 움직임 벡터를 이용하는 방법을 택하고 있는데 본 논문에서도 속도의 효율성을 위해서 기존의 움직임 벡터들을 이용하는 방법을 선택하였다. 제안한 방법을 이용해서 실영상에 대해서 실험을 해 본 결과 연산량을 고려한 PSNR (Peak Signal to Noise Ratio)의 측면에서 우수한 성능을 보여주는 것을 확인할 수 있었다.

Keywords

References

  1. N. Chaddha, 'A software only scalable video delivery system for multimedia applications over heterogeneous networks', Proc. Int. Conf. Image Processing. Vol. 3. pp. 404-407, Washington, DC, Oct. 1995 https://doi.org/10.1109/ICIP.1995.537657
  2. H. Sun, W. Kwok and J.W. Zdepski, 'Architectures for MPEG compressed bitstream scaling', IEEE Trans. on Circuit Syst. Video Technol., Vol. 6, No. 2, pp. 191-199, Apr. 1996 https://doi.org/10.1109/76.488826
  3. N. Bjork and C. Christopoulos, 'Transcoder architectures for video coding', IEEE Trans. on Consumer Electronics, Vol. 44, No.1, pp. 88-98, Feb. 1998 https://doi.org/10.1109/30.663734
  4. P.A.A. Assuncao and M. Ghanbari, 'Afrequency-domain video transcoder for dynamic bit-rate reduction of MPEG-2 bit stream', IEEE Trans. on Circuits Syst. Video Technol., Vol. 8, No. 8, pp. 95-4967, Dec. 1998
  5. T. Shanableh and M. Ghanbari, 'Heterogeneous video transcoding to lower spatio-temporal resulution and different encoding formats', IEEE Trans. on Multimedia, Vol. 2, No. 2, pp. 101-110, June 2000 https://doi.org/10.1109/6046.845014
  6. ITU-T Recommendation H.261, Video codec for audiovisual services at p*64 kbits, Mar. 1993
  7. ITU-T Recommendation H.263, Video coding for low bit rate communication, Feb. 1998
  8. CCITT Recommendation MPEG-1, Coding of moving pictures associated audio for digital storage media at up to about 1.5 Mbit/s, ISO/IEC 11172, Geneva, Switzerland, 1993
  9. CCITT Recommendation MPEG-2, Generic coding of moving pictures and associated audio, ISO/IEC 13818, Geneva, Switzerland, 1994
  10. V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards, Algorithms and Architectures. Boston, MA : Kluwer Academic, 1995
  11. J. Youn, M. Sun and C.W. Lin, 'Motion vector refinement for high-performance transcoding', IEEE Trans. on Multimedia, Vol. 1, No. 1, pp. 30-40, Mar. 1999 https://doi.org/10.1109/6046.748169
  12. B. Shen, I.K. Sethi and B. Vasudev, 'Adaptive motion-vector re-sampling for compressed video downscaling', IEEE Trans. on Circuits Syst. Video Technol., Vol. 9, No. 6, pp. 929-936, Sept. 1999 https://doi.org/10.1109/76.785730
  13. N. Merhav and V. Bhaskaran, 'Fast algorithms DCT domain image down-sampling and for inverse motion compensation', IEEE Trans. on Circuits Syst. Video Technol., Vol. 7, No. 3, pp. 468-476, June 1997 https://doi.org/10.1109/76.585926
  14. K.D. Kim and J.K. Kim, 'Fast motion vector refinement for MPEG-1 to MPEG-4 transcoding with spatial down-sampling in DCT domain', Proc. Int. Conf. Image Processing, Vol. 1, pp. 469-472, 2001 https://doi.org/10.1109/ICIP.2001.959055
  15. W. Zhy, K.H. Yang and M.J. Beacken, 'CIF-to-QCIF video bitstream down conversion in the DCT domain', Bell Labs Technical Journal, Vol. 3, No. 3, pp. 21-29, July-Sept. 1998 https://doi.org/10.1002/bltj.2113
  16. H.W. Park, Y.S. Park and S.K. Oh, 'L/M-fold image resizing in block-DCT domain using symmetric convolution', submitted to IEEE Trans. on Image Processing, Sept. 2001 https://doi.org/10.1109/TIP.2003.816008
  17. H. Li, A. Lundma가 and R. Forchheimer, 'Image sequence coding at very low bitrates : a review', IEEE Trans. on Image Processing, Vol. 3, No. 5, pp. 589-609, Sep. 1994 https://doi.org/10.1109/83.334983
  18. U.V. Koc and K.J.R. Liu, 'DCT-based motion estimation', IEEE Trans. on Image Processing, Vol. 7, No. 7, pp. 468-476, June 1997
  19. M. Song, A. Cai and J.A. Sun, 'Motion estimation in DCT domain', ICCT 96, Vol. 2, pp. 670-674, 1996 https://doi.org/10.1109/ICCT.1996.544972
  20. S.F. Chang and D.G. Messerschmitt, 'Manipulation and compositing of MC-DCT compressed video', IEEE J. Select. Areas Commun, Vol. 13, No. 1, pp. 1-11, 1995 https://doi.org/10.1109/49.363151
  21. ITU-T SG-15, 'Video codec test model, TMN5', Jan, 1995