DOI QR코드

DOI QR Code

4.3 μm 파장 Optical Band-Pass Filter의 제작과 CO2 감도 특성

Fabrication and CO2-sensing Characteristics of Optical Band-Pass Filter for 4.3 CO2 Wavelength

  • 이상훈 (부산대학교 무기재료공학과) ;
  • 김수현 (부산대학교 무기재료공학과) ;
  • 김광호 (부산대학교 무기재료공학과)
  • Lee, Sang-Hoon (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Kim, Soo-Hyun (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Kim, Kwang-Ho (Department of Inorganic Materials Engineering, Pusan National University)
  • 발행 : 2002.01.01

초록

본 연구에서는 $CO_2$ 흡수단이 있는 4.3${\mu}m$ 파장대역의 광학 필터를 전자빔 증발 장치를 이용하여 Ge와 $SiO_2$ 박막을 다층으로 설계, 제작하였다. 제작된 Ge/$SiO_2$ 다층박막 필터는 기준파장에 대하여 반가폭(FWHM) 204nm, 투과율 58.2%, 금지대역에 대하여 5% 이하의 차단특성을 나타내는 협대역 투과필터 (narrow band-pass filter: BPF)특성을 나타내었다. 광학적 대역투과필터를 사용하여, FT-IR내에 감지실을 설치하여 단식 필터(KBr+BPF)와 복식필터(BPF+BPF)의 $CO_2$ 농도별 감도특성을 비교측정 하였다. 측정시 $CO_2$의 농도는 500ppm을 단위로 500∼5000ppm의 범위까지 관찰하였는데, 복식 필터는 단식 필터에 비해 투과율이 낮았지만, 우수한 감도 특성을 보였다.

Optical Band-pass Filter(BPF) for the selected wavelength of 4300 nm was designed and fabricated on Si wager by alternately depositing Ge and $SiO_2$ thin layers by an electron beam evaporation technique. The fabricated BPF showed the optical transmittance characteristics of 58.2% with FWHM(Full Width at Half Maximum) of 204 nm at 4300 nm, but showed the transmittance less than 5% due to the reflectance over all the wavelength ranges except 4300 nm band. The $CO_2$ sensitivity of BPF was investigated with the transmittance as a function of $CO_2$ gas concentration using a sensing cell attached to FT-IR instrument. The transmittance of BPF was almost linearly decreased with increasing of $CO_2$ concentration in the range of from 500 to 5000 ppm. The sensing structure using double BPFs showed higher slop of transmittance vs $CO_2$ concentration, and thus higher gas sensitivity than that using a single BPF, even though the former had relatively lower transmittance.

키워드

참고문헌

  1. D. H. Kim, J. Y. Yoon, H. C. Park and K. H. Kim, 'Sensing Characteristics of La$_{2}$O$_{3}$-coated SnO$_{2}$ Thick Film to CO$_{2}$ Gas,' l. Kor: Ceram. Soc., 36(5), 564-569 (1999)
  2. D. H. Kim, S. H. Lee and K. H. Kim, 'Sensing Characteristics of Thin Pt/SnO$_{2}$ Composite Film to CO Gas," J. KOT. Ceram. Soc., 37(12), 1135-1139 (2000)
  3. D. H. Kim, J. Y. Yoon, H. C. Park and K. H. Kim, 'Gas Sensing Characteristics of La$_{2}$O$_{3}$-SnO$_{2}$ Thick Film to CO$_{2}$ Gas,' J. Kor. Ceram. Soc., 36(3), 301-306 (1999)
  4. D. H. Kim, J. Y. Yoon, H. C. Park and K. H. Kim, 'Fabrication and Characteristics of CO$_{2}$-gas Sensor using $Li_2CO_3-Li_3PO_4-Al_2O_3$ Electrolyte and $LiMn_2O_4$ Reference Electrode,' Sensors and Actuators B, 76, 594-599 (2001) https://doi.org/10.1016/S0925-4005(01)00642-6
  5. A. Dubbe, M. Wake and Y. Sadaoka, 'Yttria/Carbonate Composite Solid Electrolytes for Potentiometric CO$_{2}$ Sensors,' Solid State Ionics, 96, 201-208 (1997) https://doi.org/10.1016/S0167-2738(97)00010-6
  6. H. Narita, Z. Y Can, J. Mizusaki and H. Tagawa, 'Solid State CO$_{2}$ Sensor using an Electrolyte in the System $Li_2CO_3-Li_3PO_4-Al_2O_3$,' Solid State Ionics, 79, 349-353 (1995) https://doi.org/10.1016/0167-2738(95)00086-L
  7. N. E. Agbor, M. C. Petty and A. P. Monkman, 'Polyaniline Thin Films for Gas Sensing,' Sensors and Actuators B, 28, 173-179 (1995) https://doi.org/10.1016/0925-4005(95)01725-9
  8. N. E. Agbor, J. P. Cresswell, M. C. Petty and A. P. Monkman, 'An Optical Gas Sensor Based on Polyaniline Langmuir-Blodgett Films,' Sensors and Actuators B, 41, 137-141 (1997) https://doi.org/10.1016/S0925-4005(97)80286-9
  9. J. P. Dakin, B. H. Wiegl and H. O. Edwards, 'Progress with Optical Gas Sensors using Correlation Spectroscopy,' Sensors and Actuators B, 29, 87-93 (1995) https://doi.org/10.1016/0925-4005(95)01667-8
  10. H. Alause, F. Grasdepot, J. P. Malzac, W. Knap and J. Hermann, 'Micromachined Optical Thnable Filter for Domestic Gas Sensors,' Sensors and Actuators B, 43, 18-23 (1997) https://doi.org/10.1016/S0925-4005(97)00139-1
  11. F. Grasdepot, J. Suski, H. Alause, W. Knap and J. P. Malzac, 'Domestic Gas Sensor with Micromachined Optical Thnable Filter,' Sensors and Actuators B, 36, 377-380 (1996) https://doi.org/10.1016/S0925-4005(97)80099-8
  12. D. Rossberg, 'Optical Properties of the Integrated Infrared Sensor,' Sensors and Actuators A, 54, 793-797 (1996) https://doi.org/10.1016/S0924-4247(97)80057-X
  13. D. Bauer, M. Heeger, M. Gebhard and W. Benecke, 'Design and Fabrication of a Thermal Infrared Emitter,' Sensors and Actuators A, 55, 57-63 (1996) https://doi.org/10.1016/S0924-4247(96)01250-2
  14. K. Takeuchi, T. Tanaka, M. Ikeda, et al., 'Highly Accurate CO$_{2}$ Gas Sensor Using a Modulation-type Pyroelectric Infrared Detector,' Jpn. J. Appl. Phys., 32, 221-227 (1993) https://doi.org/10.1143/JJAP.32.221
  15. K. Shibata, T. Yokoo, K. Takeuchi, et aI., 'A New-structure IR Gas Sensor,' Jpn. J. Appl. Phys., 26, 1898-1902 (1987) https://doi.org/10.1143/JJAP.26.1898
  16. J. C. Manifacier, J. Gasiot and J. P. Fillard, 'A Simple Method for the Determination of the Optical Constants n, k and Thickness of a Weakly Absorbing Thin Film,' J. Phys., E 9, 1002-1004 (1976)
  17. D. Minkov and R. Swanepoel, 'Computerization of the Optical Characterization of a Thin Dielectric Film,' Opt. Eng., 32, 3333-3337 (1993) https://doi.org/10.1117/12.151287
  18. S. C. Chiao, B. G. Bovard and H. A. Macleod, 'Opticalconstant Calculation over an Extend Spectral Region: Application to Titanium Dioxide Film,' Appl. Opt., 34, 7355-7360 (1995) https://doi.org/10.1364/AO.34.007355
  19. S. S. Yang and T. H. Song, 'An Improved WSGGM-based Narrow Band Model for the CO$_{2}$ 4.3$\mu{m}$ Band,' Int. J. Therm. Sci., 38, 228-238 (1999) https://doi.org/10.1016/S1290-0729(99)80086-6
  20. A. R. Forouchi and I. Bloomer, 'Optical Dispersion Relations for Amorphous Semiconductors and Amorphous Dielectrics,' Phys. Rev. B, 34, 7018-7026 (1986) https://doi.org/10.1103/PhysRevB.34.7018
  21. A. R. Forouchi and I. Bloomer, 'Optical Properties of Crystalline Semiconductors and Dielectrics,' Phys. Rev. B, 38, 1865-1874 (1988) https://doi.org/10.1103/PhysRevB.38.1865
  22. Essential Macleod (Ver. 8.2), Optical Coating Design Program (Thin Film Center Inc)
  23. H. A. Macleod, Thin-film Optical Filters 2nd ed., pp. 234 (Macmillan, New York, 1986)
  24. S. Laux and W. Richter, 'Packing-density Calculation of Thin Fluoride Films from Infrared Transmission Spectra,' Appl. Opt., 35, 97-101 (1996) https://doi.org/10.1364/AO.35.000097
  25. F. Flory, E. Pelletier, G. Albrand and Y. Hu, 'Surface Optical Coatings by Ion Assisted Deposition Techniques: Study of Uniformity,' Appl. Opt., 28, 2952-2959 (1989) https://doi.org/10.1364/AO.28.002952
  26. H. J Cho and C. K. Hwangbo, 'Optical Inhomogeneity and Microstructure of ZrO$_{2}$ Thin Films Prepared by Ion-assisted Deposition,' Appl. Opt., 35, 5545-5552 (1996) https://doi.org/10.1364/AO.35.005545
  27. K. Shibata, T. Yokoo, K. Takeuchi, et al., 'A New-structure IR Gas Sensor,' Jpn. J. Appl. Phys., 26, 1898-1902 (1987) https://doi.org/10.1143/JJAP.26.1898