참고문헌
- D. Montana and L. Davis, 'Training feedforward neural networks using genetic algorithms,' Proc. of Eleventh Int'l Joint Conf. on Artificial Intelligence, pp. 762-767, San Mateo, CA, 1989
- D. B. Fogel, L. J. Fogel, and V. W. Porto, 'Evolving neural networks,' Biological Cybernetics, Vol. 63, pp. 487-493, 1990 https://doi.org/10.1007/BF00199581
- X. Yao, 'Evolving artificial neural networks,' Proceedings of the IEEE, vol. 87, no. 9, pp. 1423-1447, September 1999 https://doi.org/10.1109/5.784219
- X. Yao and Y. Liu, 'A new evolutionary system for evolving artificial neural networks,' IEEE Transactions on Neural Networks, vol. 8, pp. 694-713, May 1998 https://doi.org/10.1109/72.572107
- T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation, IOP Publishing and Oxford University Press, New York and Bristol (UK), 1997
- D. E. Goldberg, Genetic Algorithms in Serarch, Optimization, and Machine Learning, Addison-Wesley, Reading Massachusetts, 1989
- K. A. De Jong, 'An analysis of the behavior of a class of genetic adaptive systems,' Doctorial dissertation, University of Michigan, 1975
- J.-H. Ahn and S.-B. Cho, 'Speciated neural networks evolved with fitness sharing technique,' Proceedings of Congress on Evolutionary Computation, Vol. 1, pp. 390-396, May 2001 https://doi.org/10.1109/CEC.2001.934417
- S. Kullback and R. A. Leibler, 'On information and sufficiency,' Ann. Math. Stat., 22, pp. 79-86, 1951 https://doi.org/10.1214/aoms/1177729694
- S. A. Harp, T. Samad, and A. Guha, 'Toward the genetic synthesis of neural networks,' in Proc. 3rd Int. Conf. Genetic Algorithms and Their Applications, J. D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, pp. 379-384, 1989
- S.-W. Lee, 'Off-line recognition of totally unconstrained hand-written numerals using multilayer cluster neural network,' IEEE Trans. Pattern Anal. Machine Intell., Vol. 18, pp. 648-652, 1996 https://doi.org/10.1109/34.506416
- P. A. Castillo, V. Rivas, J.J. Merelo, J. Gonzalez, A. Prieto and G. Romero, 'G-Prop-II: Global optimization of multilayer perceptrons using GAs,' Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 2022-2027, May 1999 https://doi.org/10.1109/CEC.1999.785523
- A. J. C. Sharkey, 'On combining artificial neural nets,' Connection Science, Vol. 8, pp. 299-313, 1996 https://doi.org/10.1080/095400996116785
- L. Xu, A. Krzyzak and C. Y. Suen, 'Methods of combining multiple classifiers and their applications to handwriting recognition,' IEEE Trans. on Systems, Man and Cybernetics, vol. SMC-22, no. 3, pp. 418-435, 1992 https://doi.org/10.1109/21.155943
- 백종현, 다중 인식기의 다단계 결합을 통한 무제약 필기숫자 인식, 연세대학교 대학원 박사학위 논문, 1996
- J. C. Bioch, O. V. D. Meer, and R. Potharst, 'Classification using bayesian neural nets,' IEEE International Conference on Neural Networks, vol. 3, pp. 1488-1493, 1996 https://doi.org/10.1109/ICNN.1996.549120
- A. Khotanzad, and C. Chung, 'Hand written digit recognition using BKS combination of neural network classifiers,' Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 94-99, 1994 https://doi.org/10.1109/IAI.1998.666880
- M. Perrone and L. N. Cooper, 'When networks disagree: Ensemble methods for hybrid neural networks,' Neural Networks for Speech and Image Processing, Chapman Hall, 1993
- A. D. Gordon, Classification: Methods for the Exploratory Analysis of Multivariate Data, Chapman and Hall, 1981
- K. Viele and C. Srinivasan, 'Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler information,' Journal of Statistical Planning and Inference, Vol. 84, pp. 201-219, 2000 https://doi.org/10.1016/S0378-3758(99)00151-2
- J. A. Garcia, J. Fdez-Valdivia, X. R. Fdez-Vidal, and R. Rodriguez-Sanchez, 'Information theoretic measure for visual target distinctness,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, pp. 362-383, April 2001 https://doi.org/10.1109/34.917572
- M. N. Do and M. Vetterli, 'Texture similarity measurement using Kullback-Leibler distance on wavelet subbands,' Proc. IEEE Int. Conf. on Image Proc. (ICIP), Vancouver, Canada, Sep. 2000 https://doi.org/10.1109/ICIP.2000.899558
- UCI Machine Learning Repository, http://www1.ics.uci.edu/~mlearn/MLRepository.html
- R. Setino and L. C. K. Hui, 'Use of a quasi-newton method in a feedforward neural network construction algorithm,' IEEE Trans. on Neural Networks, Vol. 6, no. 1, pp. 273-277, 1995 https://doi.org/10.1109/72.363426
- L. Prechelt, 'Probenl-a set of neural network benchmark probelms and benchmarking rules,' Tech. Rep. 21/94, Fakultat fur Informatik, Universitat Karlsruhe, 76128, Germany, 1994